1 华盛顿大学医学院医学科学家培训计划,美国密苏里州圣路易斯 63110,2 华盛顿大学医学院神经科学研究生课程,美国密苏里州圣路易斯 63110,3 华盛顿大学医学院神经病学系,美国密苏里州圣路易斯 63110,4 华盛顿大学医学院放射学系,美国密苏里州圣路易斯 63110,5 华盛顿大学医学院神经科学系,美国密苏里州圣路易斯 63110,6 华盛顿大学医学院生物医学工程系,美国密苏里州圣路易斯 63110,7 华盛顿大学医学院物理系,美国密苏里州圣路易斯 63110,8 哈佛医学院布莱根妇女医院医学系,美国马萨诸塞州波士顿 02115
兴奋性/抑制(E/I)平衡是指兴奋性神经递质(例如谷氨酸)之间的动态调节,这些兴奋性神经递质促进神经元释放和抑制性神经递质,例如抑制神经元的γ-氨基抑制剂(GABA),抑制神经元的活性[1]。e/i平衡是几种大脑功能的基础,包括感觉处理,学习,记忆和认知。对E/I信号的精确调节可确保神经元有效地通信而不会过度兴奋或抑制,这可能导致网络不稳定性或功能障碍。E/I平衡中的破坏与各种神经和精神疾病有关[2]。例如,在癫痫中,过量的兴奋活动或抑制性控制的不足会导致不受控制的神经元发射,从而导致癫痫发作[3]。 在自闭症谱系障碍(ASD)中,E/I平衡的改变被认为有助于感觉处理异常和认知缺陷[2]。 精神分裂症是E/I不平衡的另一个条件,具有破坏的抑制性信号传导,尤其是涉及GABA能中间神经元,潜在的潜在的认知和感知障碍[4]。 在麻醉期间,E/I平衡也受到深远的影响。 麻醉剂通常会增强抑制性神经传递和/或减少兴奋性神经传递,以诱导可逆的意识和感觉丧失[5]。 例如,一种常用麻醉剂的氯胺酮充当NMDA受体拮抗剂,导致兴奋性信号传导和皮质和皮质下神经活性的调节降低[6]。 同样,例如,在癫痫中,过量的兴奋活动或抑制性控制的不足会导致不受控制的神经元发射,从而导致癫痫发作[3]。在自闭症谱系障碍(ASD)中,E/I平衡的改变被认为有助于感觉处理异常和认知缺陷[2]。精神分裂症是E/I不平衡的另一个条件,具有破坏的抑制性信号传导,尤其是涉及GABA能中间神经元,潜在的潜在的认知和感知障碍[4]。在麻醉期间,E/I平衡也受到深远的影响。麻醉剂通常会增强抑制性神经传递和/或减少兴奋性神经传递,以诱导可逆的意识和感觉丧失[5]。例如,一种常用麻醉剂的氯胺酮充当NMDA受体拮抗剂,导致兴奋性信号传导和皮质和皮质下神经活性的调节降低[6]。同样,
肌肉痉挛在慢性脊髓损伤(SCI)中很常见,对康复和日常活动提出了挑战。痉挛的药理学管理主要是靶向抑制兴奋性输入的抑制,这是一种阻碍运动后期的方法。为了确定更好的靶标,我们研究了对运动神经元的抑制性和兴奋性突触输入的变化,以及慢性SCI中的动感神经元兴奋性。我们在成年小鼠的性小鼠中诱导了完全或不完全的SCI,并将损伤不完全的人分为低功能恢复组。然后提取sacrocaudal脊髓,并用于研究损伤以下的可塑性,并以幼稚动物的组织为对照。背根的电刺激引起了慢性严重SCI的痉挛性痉挛激活,但不能在对照中进行。为了评估通过感觉刺激激活的总体突触抑制作用,我们测量了脊柱根部恢复的速率依赖性抑郁症。我们发现在慢性损伤模型中抑制性输入受到损害。当药理学上阻断突触抑制时,所有制剂都变得明显痉挛,甚至是对照。但是,慢性损伤的制剂会产生比对照更长的痉挛。然后,我们在感官诱发的痉挛过程中测量了运动神经元的兴奋性突触后术(EPSC)。数据显示EPSC的振幅或动物群中的电导率没有差异。尽管如此,我们发现在慢性SCI中,由EPSC激活的运动神经元持续增强。这些发现表明,运动神经元兴奋性和突触抑制的变化而不是激发会导致痉挛,并且更适合更有效的治疗干预措施。
该法案禁止执法人员、紧急医疗服务提供者或其他急救人员在培训中使用“兴奋性谵妄”一词。治安官不得在事件报告中使用“兴奋性谵妄”一词来描述一个人。验尸官或其他有权确定死因的人员不得在死亡记录上将“兴奋性谵妄”登记为死因
在胚胎时期,神经元通信在建立具有神经元兴奋性的突触之前就开始了,此处称为胚胎神经兴奋性(ENE)。ene已被证明可以调节发展转录程序的展开,但是并非全部了解开发生物的全球后果。在这里,我们监测了Ze-Brafish胚胎端脑中的钙(Ca 2 1),作为ENE评估瞬时药理处理疗效增加或减少ENE的疗效的代理。在胚胎周期结束时增加或减少ENE分别促进了多巴胺(DA)神经元的数量减少或减少。这种多巴胺能规范的可塑性发生在斑马鱼幼虫的下降(sp)中,后6 d后(DPF)在相对稳定的VMAT2阳性细胞中。非巴氨基能VMAT2阳性细胞构成了可以由ENE募集的DA神经元的储备库的无静止的生物标记。调节ENE在处理结束后几天还影响了幼虫运动。尤其是,ENE从2 DPF的增加增加了幼虫在6 dpf时的超塑,让人联想到斑马鱼内跨表型报道了注意力不足多动障碍(ADHD)。这些结果为识别可能干扰ENE的环境因素以及研究将ENE与神经递质规范联系起来的分子机制提供了方便的框架。
Latrophilin -1(LPHN1,aka Cirl1和Cl1; Gene符号ADGRL1)是一种粘附GPCR,已与兴奋性突触传播有关,作为α-洛洛内罗毒素的候选受体。在这里,我们分析了包含细胞外MYC表位标签的LPHN1的条件敲门/敲除小鼠。在所有实验中都使用了两个性别的小鼠。出乎意料的是,我们发现LPHN1局部在培养的神经元中,这些神经元与兴奋性和抑制突触中存在的突触纳米簇。在培养的神经元中LPHN1的条件缺失未能引起兴奋性突触中可检测到的障碍,但在抑制突触数量和突触传播的降低中,这对于接近神经元躯体的突触最为明显。没有观察到轴突或树突状产生或分支的变化。我们的数据表明,LPHN1是兴奋性和抑制突触中存在的少数突触后粘附分子之一,并且LPHN1本身对于兴奋性突触传播并不是必需的,但对于某些抑制性突触连接来说是必需的。
大约五分之四的神经元是兴奋性的。这在功能区域和物种中都是如此。为什么我们有这么多兴奋性神经元?我们知之甚少。在这里,我们为这个问题提供了一个规范性的答案。我们设计了一个与任务无关、独立于学习且可通过实验测试的功能复杂性测量方法,它量化了网络解决复杂问题的能力。使用一个物种——果蝇幼虫——的第一个神经元级全连接组,我们发现了最大化功能复杂性的最佳兴奋-抑制 (EI) 比率:75-81% 的神经元百分比是兴奋性的。这个数字与通过 scRNA-seq 观察到的真实分布一致。我们发现,兴奋性神经元的丰富性赋予了功能复杂性的优势,但只有当抑制性神经元高度连接时才会如此。相反,当 EI 身份被均匀采样(不依赖于连接性)时,最佳 EI 比率落在相等的种群大小附近,并且其整体实现的功能复杂性是次优的。我们的功能复杂性测量为大脑中兴奋性神经元过多提供了规范性解释。我们期待这种方法能进一步揭示各种神经网络结构的功能意义。
皮层刺激正在成为基础研究中的实验工具,也是治疗一系列神经精神疾病的有前途的疗法。随着多电极阵列进入临床实践,使用电刺激的时空模式来诱导所需生理模式的可能性在理论上已成为可能,但在实践中,由于缺乏预测模型,只能通过反复试验来实现。越来越多的实验证据证实,行波是皮层信息处理的基础,但尽管技术迅速进步,我们仍缺乏对如何控制波特性的理解。本研究使用混合生物物理解剖学和神经计算模型来预测和理解简单的皮层表面刺激模式如何通过抑制性中间神经元的不对称激活来诱导定向行波。我们发现锥体细胞和篮状细胞被阳极电极高度激活,被阴极电极激活的程度最低,而马丁诺蒂细胞被两个电极适度激活,但对阴极刺激略有偏好。网络模型模拟发现,这种不对称激活会导致浅表兴奋性细胞中产生行波,该行波会单向传播,远离电极阵列。我们的研究揭示了不对称电刺激如何通过依赖两种不同类型的抑制性中间神经元活动来塑造和维持内源性局部电路机制的时空动态,从而轻松促进行波。
兴奋性/抑制(E/I)失衡假设认为兴奋性(谷氨酸能)和抑制性(GABA能)机制之间的不平衡是自闭症行为特征的基础。但是,E/I不平衡是如何出现的,以及在自闭症症状和大脑区域之间如何有所不同。我们使用创新分析方法 - 将竞争性基因 - 基因分析和与皮质厚度(CT)相关的基因表达方法研究,以调查来自Aims-2-2-障碍的参与者的遗传方差,大脑结构和自闭症症状之间的关系年龄6至30岁。使用竞争性基因分析,我们研究了谷氨酸和GABA基因组的综合遗传变异是否与自闭症症状和大脑结构变异的行为度量有关。此外,使用相同的基因组,我们在整个皮层中加在一起,自闭症和神经型控制参与者以及在单独的感觉亚组中的CT差异。谷氨酸基因组与自闭症诊断观察计划2(ADOS-2)和自闭症诊断访谈重新定义(ADI-R)的所有自闭症症状严重程度评分有关。在青少年和成年人中,谷氨酸和GABA基因具有更大基因表达的大脑区域显示自闭症和神经型对照参与者之间的CT差异更大,尽管在相反的方向上。此外,基因表达蛋白纤维与单独的感觉亚组中的CT pro文件相关。我们的结果表明,E/I相关遗传学与自闭症症状方案以及大脑结构改变之间的复杂关系,谷氨酸和GABA可能存在差异作用。
Cécilia Neige、Laetitia Imbert、Maylis Dumas、Anna Athanassi、Marc Thévenet 等。结合呼吸同步嗅觉计和脑刺激研究气味对皮质脊髓兴奋性和有效连接的影响。可视化实验杂志:JoVE,2024,203,�10.3791/65714�。�hal-04758099�