临床前模型提出了线粒体氧化应激和胰岛素抵抗之间的病因联系。然而,这种机制在人类中的转化和病理生理意义尚不清楚。在此,我们采用了人类的体内机械方法来操纵线粒体氧化还原状态,同时评估胰岛素作用。为此,我们将脂质过载的静脉输注与摄入线粒体靶向的抗氧化剂(MTAO)与胰岛素钳研究结合使用。在脂质过载期间,胰岛素刺激的肌肉葡萄糖吸收由股动静脉平衡技术确定,MTAO增加了。在肌肉分子水平上,MTAO不影响规范胰岛素信号传导,而是增加了胰岛素刺激的GLUT4易位,同时减轻了脂质过度供应下的线粒体氧化负担。ex vivo研究表明,在暴露于高细胞内脂质水平的肌肉纤维中,MTAO改善了线粒体生物能的特征,包括线粒体H 2 O 2发射的降低。这些发现提供了转化和机械证据,这涉及线粒体氧化剂在人类脂质诱导的肌肉胰岛素抵抗的发展中。
靶向芳香化酶可剥夺 ER + 乳腺癌中的雌激素,是治疗此类肿瘤的有效方法。然而,药物耐药性是尚未得到满足的临床需求。长期雌激素缺乏 (LTED) ER + 乳腺癌细胞的脂质组学分析(芳香化酶抑制剂耐药性模型)显示细胞内脂质储存增强。功能代谢分析表明,脂滴与过氧化物酶体(我们发现它们在 LTED 细胞中富集且活跃)一起控制氧化还原稳态并赋予耐药肿瘤代谢适应性。这种重编程由乙酰辅酶 A 羧化酶 1 (ACC1) 控制,其靶向选择性地损害了 LTED 存活率。然而,添加支链脂肪酸和超长链脂肪酸可逆转 ACC1 抑制,这一过程由过氧化物酶体功能和氧化还原稳态介导。这些发现的治疗相关性在芳香化酶抑制剂治疗的患者样本中得到验证。最后,针对 ACC1 减少了耐药患者来源的异种移植瘤的生长,从而确定了一个可针对性的枢纽,以对抗 ER + 乳腺癌中获得雌激素独立性。
摘要 本研究旨在研究氧化三甲胺(TMAO)调控自噬促进动脉粥样硬化(AS)发生发展的作用机制。以ox-LDL处理血管平滑肌细胞(VSMCs)建立AS体外模型,采用CCK-8试剂盒检测VSMCs吸光度(OD)值,采用透射电子显微镜(TEM)监测自噬体,采用Western印迹法(WB)检测Beclin-1、p62、LC3、α-SMA、SM22-α、OPN、PI3K、AKT、mTOR、p-PI3K、p-AKT、p-mTOR蛋白表达。采用实时荧光定量PCR(RT-qPCR)检测α-SMA、SM22-α、OPN、PI3K、AKT、mTOR、Beclin-1、p62、LC3基因表达;采用Transwell小室实验检测VSMCs迁移能力;采用油红O染色法对VSMCs内脂滴进行染色。TMAO明显促进自噬抑制和AS表型转化,TMAO+ox-LDL组p-PI3K/PI3K、p-AKT/AKT、p-mTOR/mTOR、p62蛋白表达高于ox-LDL组,Beclin-1和LC3低于ox-LDL组。 TMAO+ox-LDL组PI3K、AKT、mTOR、p62基因表达量高于ox-LDL组,而Beclin-1、LC3基因表达量低于ox-LDL组。LY294002的干预可逆转相应蛋白和基因的调控。该研究证实TMAO可通过激活PI3K/AKT/mTOR通路促进AS的自噬抑制,为临床诊断方法的改进和AS靶向药物的研发提供可靠依据。(Int Heart J 2023; 64: 462-469) 关键词:PI3K/AKT/mTOR信号,自噬体
niemann - pick型(NPC)疾病是一种罕见的进行性溶酶体脂质储存障碍,表现出具有临床综合症的异质谱,包括内脏,神经系统和精神症状。这种单基因常染色体隐性疾病主要是由控制细胞内脂质稳态的NPC1基因中的突变引起的。囊泡介导的内糖体脂质运输和通过轨道间膜接触位点通过孔间膜接触位点的非西西脂质交换。NPC1功能的丧失会触发各种脂质物种的细胞内积累,包括胆固醇,糖磷脂,鞘磷脂和鞘氨醇。NPC1介导的脂质转运功能障碍对所有脑细胞都有严重的后果,从而导致神经变性。除了神经元NPC1的细胞自主贡献外,其他脑细胞中异常的NPC1信号对于病理至关重要。我们在这里讨论NPC病理学中神经元,少突胶质细胞,星形胶质细胞和小胶质细胞之间的内染色体功能障碍和Atight串扰的重要性。我们坚信,特定细胞的救援可能不足以抵消NPC病理的严重程度,而是针对常见机制(例如内部溶酶体和脂质运输功能障碍)可能会改善NPC病理学。本文是讨论会议问题的一部分,“理解神经变性中的内聚糖网络”。
• 用于建立细胞系的细胞最初是从家养约克夏猪的皮下腹部脂肪组织活检中分离出来的。分离的细胞使用已验证其预期用途的标准方法(包括显微镜检查)进行表型鉴定。• 细胞系是通过选择性培养贴壁细胞,使其从含血清培养基生长到无血清培养基,经过几代(传代)培养而建立的。使用猪特异性聚合酶链式反应 (PCR) 检测来验证物种身份,并通过核型分析(正常染色体扩散)来评估遗传稳定性。• 细胞的培养方式如下:首先在贴壁培养增殖期增加细胞总数,然后进入细胞育肥期,在此阶段,细胞在特定培养基因子的诱导下形成细胞内脂滴。• 通过添加收获液分离细胞、离心、清洗,并在温控环境下储存在无菌容器中。 • 清洗后收获的材料被描述为培养的猪肉(Sus scrofa domesticus)脂肪细胞,其脂肪酸含量与传统猪肉脂肪产品相似。并提供了微生物、毒性重金属和微量金属的规格。• 我们评估了有关细胞系、生产工艺(包括建立细胞库)、生产过程中使用的物质以及收获的细胞材料特性的信息,包括可披露的安全叙述中提供的信息以及补充保密材料中支持性佐证信息。• 根据 CCC 000008 中提供的数据和信息,我们目前对 Mission Barns 的结论没有任何疑问,该结论认为,由 CCC 000008 中定义的生产工艺产生的培养猪肉脂肪细胞材料构成或含有该材料的食品与通过其他方法生产的同类食品 1 一样安全。此外,我们尚未发现任何信息表明所述生产工艺
引入肺发育期间,原始上皮细胞以精确的时机的形式增殖,迁移和改变表型认同,并由来自地下膜(BM)的信号锚定,这是一种专门的细胞外基质(ECM)结构,在特定的开发检查点(1)精确重塑了(1)。一旦肺发育完成,靶向替代上皮细胞并缓慢的肺泡BM的转移速度缓慢,可保护成熟肺内稳态期间的肺泡结构。然而,随着BM年龄(2),上皮细胞失去了有效增殖和分化的能力,随着时间的流逝,对慢性肺部疾病的敏感性增加。与时间精确的发育和相对静止的成年肺相比,必须迅速进行急性肺损伤的修复,以恢复气体交换上皮的生存率。修复的即时性会导致上皮增殖和分化。对于野生型小鼠,由单剂量的气管内脂多糖(LPS)诱导的轻度肺损伤很容易在几天内回收,克服了炎症衍生的蛋白水解损害对BM的BM(3,4)。lps测试了肺泡的再生潜力,暴露了上皮相互作用的损害,这些相互作用可能加剧肺损伤或倾向于加速衰老。整联蛋白是由结合ECM配体的α和β亚基组成的异二聚体跨膜蛋白受体。整联蛋白提供细胞与ECM之间的物理连接,它们传播了往返于周围矩阵的信号传导(5-7)。的24个整联蛋白异二聚体,12个包含β1亚基,而上皮组织中存在12β1的整合素中的许多。整合素功能取决于发展和微环境环境,这是与我们以前的工作一致的概念。我们先前报道了正常肺发育需要上皮β1整联蛋白,并且在缺席的气道分支和肺泡化的情况下受到损害,并且与不完整的上皮
引言:心脏主要通过脂肪酸 (FA) 氧化获取能量。然而,脂质摄取与脂肪酸氧化的脱钩会导致心脏脂质异常蓄积和脂毒性,尤其是在心力衰竭的情况下。CD36 是心脏组织中脂肪酸摄取的关键介质。研究表明,CD36 基因缺失可预防肥胖和糖尿病小鼠模型中心脏肥大和功能障碍的发生。然而,CD36 敲低或敲除在压力超负荷条件下心脏功能障碍发生和进展中的确切作用仍不清楚。目的:本研究旨在探讨 CD36 部分敲低在预防压力超负荷心脏脂毒性和功能障碍方面的可行性。方法:分别通过基因缺失和 AAV-9 CD36 shRNA 注射,诱导心脏特异性 CD36 完全敲除 (CKO) 和部分敲低 (CKD) 小鼠。 CD36 CKO 和 CKD 小鼠均接受横主动脉缩窄术 (TAC) 诱导心脏压力超负荷。通过超声心动图测量心脏功能,并检测心脏脂质积聚、脂肪酸氧化和代谢状态。结果:TAC 手术诱导了严重的心脏功能障碍和病理性心脏重塑,并伴有心肌内脂质沉积异常和脂肪酸氧化能力受损。CD36 CKO 减轻了衰竭心脏的异常脂质积聚,同时加剧了 TAC 引起的心脏能量缺乏和氧化应激。相反,CD36 CKD 改善了 TAC 诱导的小鼠心脏脂质积聚和过度氧化应激,同时改善了线粒体呼吸功能。此外,CD36 CKD 诱导糖酵解通量显著增加,进入 TCA 循环,从而维持 ATP 生成。因此,CD36 CKD 阻止了压力超负荷引起的心脏肥大和功能障碍的发展。结论:本研究发现,CD36 CKD(而非 CD36 CKO)能够保护压力超负荷心脏免受心脏功能损害。调控 CD36 是一种可行的策略,可以达到维持心脏能量供应的最佳状态,同时避免脂肪毒性。
标题单击磷脂合成的化学,以研究与EPR和Cryo-Em方法研究脂质 - 蛋白质的相互作用,支持者Gabriele Giachin Research Group研究小组生物分类结构联系网络:电子邮件:Gabriele.giachin.giachin@unipd.it@unipd.it copropont.it Marco Bortolus Research Group epr SpectReprspross Eprsprspross epr Spect eprsproseps epr spect epr spect eprsprops epr spect eprsproppopy eprsproppopy Web网络https://wwwdisc.chimica.unipd.it/eprlab/?page_id=111电子邮件:marco.bortolus@unipd.it Internationalsectment PI. Sebastian Glatt Institute Malopolska生物技术中心生物技术中心,Jagiellonian University,Jagiellonian University,Countrant Countrant,Countrand of Countrand of Countrand,Poland sectuds#3)生物分子的神秘类别。虽然脂质众所周知是膜结构和储能的基本单位,但它们也可以充当执行变构功能和信号传导的化学使者,并且是蛋白质稳定性和折叠的结构元素。解密不同脂质物种的确切作用和生物学相互作用已被证明难以捉摸。脂质很难研究的原因之一是相对缺乏既缺乏质疑动态并在结构层面上可视化它们的技术。在过去的几十年中,随着化学和合成生物学和新型化学技术的强大工具的研究,基于脂质的探针已变得越来越普遍,用于研究体外和体内脂质。脂质组学的应用包括,例如,了解脂质生物合成,贩运和信号的基本细胞生物学,但也发展了癌症药物递送系统。在细胞中,膜中的精确而复杂的磷脂组成对于线粒体功能至关重要。线粒体是细胞的“动力”,磷脂可能会影响包括呼吸链超复合物在内的蛋白质复合物的活性,生物发生和稳定性。尤其是,几种磷脂分子与复合物I(NADH:泛氨基氧化还原酶)交织在一起,这是呼吸链的入口点,是我们细胞的最大膜相关酶(1 MDA)。复合物I的功能障碍与儿童相关的遗传疾病和成人神经退行性综合症有关。脂质可以调节复合物活性,而不是其在维持线粒体膜完整性中的作用。需要进一步研究脂质如何调节CI组装或功能。脂质复合I相互作用及其功能含义的机制仍不清楚:通过合成不同的生物模拟脂质,我们计划在多技术方法中剖析不同脂质与复杂I的相互作用。在这种情况下,PHD项目“单击化学以合成磷脂的合成来研究脂质 - 蛋白与EPR和Cryo-EM方法的相互作用”将着重于研究分子识别机制,从而调节分子识别机制,从而调节伴侣磷脂与天然复合物之间的相互作用。