估计此次信息收集的公共报告负担平均为每份回应 1 小时,包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查信息收集的时间。请将有关此负担估计或本次信息收集任何其他方面的评论(包括减轻负担的建议)发送至国防部华盛顿总部服务处信息行动和报告局 (0704-0188),1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302。受访者应注意,尽管法律有任何其他规定,但如果信息收集未显示当前有效的 OMB 控制编号,则任何人均不会因未遵守信息收集而受到任何处罚。请不要将您的表格寄回上述地址。
脑肿瘤的抽象多类分类是医学成像领域研究的重要领域。由于准确性对于分类至关重要,因此计算机视觉研究人员引入了许多技术。但是,他们仍然面临着准确性低的问题。在本文中,提出了一种新的自动化深度学习方法,以分类多类脑肿瘤。为了实现所提出的方法,Densenet201预先训练的深度学习模型进行了微调,然后使用不平衡数据学习的深度传输进行了训练。训练有素的模型的特征是从平均池层中提取的,这代表了每种类型的肿瘤的深度信息。但是,该层的特征不足以进行精确的分类。因此,提出了两种用于选择功能的技术。第一种技术是基于熵的高特征值(EKBHFV),第二种技术是基于元启发式的改良遗传算法(MGA)。GA的选定特征通过提出的新阈值旧功能进一步完善。最后,使用非冗余串行方法融合了EKBHFV和基于MGA的功能,并使用多类SVM Cubic分类器进行分类。在实验过程中,使用了两个数据集,包括BRATS2018和BRATS2019,没有增加,并且精确度超过95%。所提出的方法与其他神经网的精确比较显示了这项工作的重要性。
摘要:减少能源消耗、碳足迹、设备尺寸和成本是即将出台的能源密集型行业路线图的关键目标。从这个意义上讲,废热回收等解决方案可以复制到不同的行业(例如陶瓷、混凝土、玻璃、钢铁、铝、纸浆和造纸),因此受到大力推广。在这方面,潜热储能 (TES) 作为一种创新技术解决方案,通过回收和储存工业废热来提高整个系统的效率。为此,通过决策支持系统 (DSS) 协助选择相变材料 (PCM)。基于最相关系统参数之间的相关性,开发了一种基于 MATLAB ® 模型的简化工具,以证明跨部门方法的可行性。研究工作进行了参数分析,以评估 PCM-TES 解决方案在不同工作条件和行业下的技术经济性能。此外,还进行了多标准评估,比较了金属合金和无机水合 PCM 盐的工具输出。总体而言,无机 PCM 表现出更高的净经济和能源节约(高达 25,000 欧元/年;480 兆瓦时/年),而金属合金则具有良好的结果、更短的周期和具有竞争力的经济比;其商业发展仍然有限。
提出了一种用于水下监视应用中的协同轨迹检测的漂移声学传感器网络最优部署决策支持系统,并在模拟场景中进行了测试。该系统集成了海水流预报、传感器范围模型和简单的漂移浮标运动模型,以预测传感器位置和时间网络性能。采用多目标遗传优化算法,通过同时优化两个服务质量指标(网络区域覆盖和跟踪覆盖的时间平均值)来搜索一组帕累托最优部署解决方案(即网络漂移声纳浮标的初始位置)。优化后找到的解代表了两个指标之间不同的效率权衡,任务规划人员可以方便地评估这些解,以便在两个冲突目标之间选择具有所需折衷的解决方案。还通过无迹变换进行了灵敏度分析,以测试解决方案对网络参数和环境不确定性的稳健性。提供了利用真实概率海水流预报的模拟场景的结果,显示了所提方法的有效性。未来的工作是使该工具完全可操作并准备在真实场景中使用。� 2013 北约科学技术组织,海事研究和经验中心
摘要。疲劳的飞行员容易出现认知障碍,从而降低他们的表现和对高安全标准的遵守。鉴于当前航空业面临的挑战,我们报告了我们正在进行的关于重新评估机组人员人为因素研究的项目的早期阶段。我们的动机源于航空组织需要为运营航空环境开发决策支持系统,能够为组织的疲劳风险管理工作提供信息。为此,关键标准是需要尽可能减少干扰并为安全系统增加信息价值。摆脱合规性疲劳风险管理中的问题和临床研究的侵入性,我们报告了一种神经科学方法,能够产生可以轻松集成到运营层面决策支持系统中的标记。报告我们实时项目的初步阶段,我们评估了适合开发跟踪细微飞行员状态(例如困倦和微睡眠事件)的系统的工具。
摘要 在极其复杂和困难的过程和情况下做出正确的决策一直是一项关键任务,也是临床上的一项挑战,并导致了大量的临床、法律和道德惯例、协议和反思,以保证临床决策的公平、参与和最新途径。然而,过程和物理现象的复杂性、时间和经济限制,以及医学和医疗保健领域的进一步努力和成就,不断提高了评估和改进临床决策的必要性。本文探讨了所谓的人工智能驱动的决策支持系统 (AI-DSS) 的兴起是否以及如何挑战临床决策过程。首先,本文分析了 AI-DSS 的兴起将如何影响和改变临床中不同代理之间的交互模式。第二步,我们指出这些不断变化的互动模式也意味着信任条件的变化、透明度方面的认知挑战、代理的基本规范概念及其在具体部署环境中的嵌入,以及最终对(可能的)责任归属的影响。第三,我们得出关于临床 AI-DSS 的“有意义的人为控制”的进一步步骤的初步结论。
现有文献表明,医疗保健中使用的基于人工智能的系统存在缺陷,会对其达到预期水平的能力产生不利影响 [1]。这主要是由于这些系统存在固有偏见。因此,迫切需要理解与这种偏见相关的一些关键概念。为了分析这种偏见,将基于人工智能的系统视为信息系统非常重要。因此,分析与信息偏见相关的一些关键概念非常重要。Althubaiti [2] 将医疗保健中的信息偏见定义为“研究设计、实施或分析中的任何系统性错误”。这揭示了两种重要的偏见类型:(a)信息偏见和(b)选择偏见。关于实验设计偏差,Althubaiti [ 2 ] 认为,这种形式的偏差很多时候本质上是无意的。在本文中,作者还提出了自我报告系统可能由于抽样方法(尤其是使用便利抽样时)、回忆期和选择性回忆而产生偏差的观点。值得注意的是,基于人工智能的决策支持系统使用来自现有文献和其他可用形式的实验结果的知识。在这种情况下,讨论中的偏差可以被认为是实验方法及其相关选择过程的结果。关于这个问题,Gurupur 等人[ 3 ] 解释了用于分析的方法如何影响结果的准确性。在他们的实验中,研究人员更加强调计算能力更强的技术,这些技术在分析医疗保健数据时会消耗更多的计算能力。值得注意的是,分析的准确性还取决于用于此目的的输入数据的准确性。基于这一论点,我们现在有三个导致推荐系统知识库出现整体偏差的基本参数:(a)由于不准确的数据分析而导致的偏差,(b)由于来自可靠资源的虚假信息而发生的偏差,以及(c)由于实验设计和实施而发生的偏差。参与决策支持系统综合的数据和知识工程师在开发系统时必须考虑这些偏差类别 [ 4 ]。Henriksen 和 Kaplan [ 5 ]
通讯作者:David Benrimoh,david.benrimoh@mail.mcgill.ca 致谢:我们要感谢斯坦伯格模拟和互动学习中心的工作人员在协助执行这项研究方面提供的帮助,以及参与研究的标准化病人 (SP) 的卓越表现和反馈质量。遵守道德标准和道德考虑:本研究已获得道格拉斯心理健康大学研究所研究伦理委员会的批准。所有参与者,包括标准化病人,均提供了书面知情同意书。本研究是根据三委员会关于研究伦理的声明进行的。披露:David Benrimoh、Myriam Tanguay-Sela、Kelly Perlman、Sonia Israel、Joseph Mehltretter、Caitrin Armstrong、Robert Fratila、Colleen Rollins 和 Marc Miresco 是 Aifred Health 的股东、员工或董事。Christina Popescu、Eryn Lundrigan、Emily Snook、Marina Wakid、Jérôme Williams、Ghassen Soufi、Tamara Perez 和 Katherine Rosenfeld 是 Aifred Health 支付薪水的研究助理。Sagar Parikh、Jordan Karp 和 Katherine Heller 是 Aifred Health 科学顾问委员会的成员,他们已经或可能在不久的将来获得该公司的股份。Howard Margolese 因参与演讲局、咨询、顾问委员会会议和临床研究而获得 Acadia、Amgen、HLS Therapeutics、Janssen-Ortho、Mylan、Otsuka-Lundbeck、Perdue、Pfizer、Shire 和 SyneuRx International 的酬金、赞助或资助。所有其他作者均未报告相关冲突。资金来源:模拟中心和 SP 的工作是麦吉尔大学和斯坦伯格模拟与互动学习中心举办的临床创新竞赛奖金的一部分,得到了 Hakim 家族的慷慨支持。研究助理、软件和参与者报酬由 Aifred Health 提供。加拿大联邦政府的青年就业计划也提供了一笔资助来支持这项工作。
摘要:在桥梁的动态条件下,我们需要实时管理。为此,本文提出了一种基于规则的决策支持系统,该系统从 Aimsun 交通微观模拟软件的模拟结果中提取必要的规则。然后,借助模糊规则生成算法对这些规则进行泛化。然后,通过一组监督和非监督学习算法对它们进行训练,以获得在实际情况下做出决策的能力。作为一项试点案例研究,在 Aimsun 中模拟了德黑兰的 Nasr 桥,并使用 WEKA 数据挖掘软件执行学习算法。根据这项实验,监督算法泛化规则的准确率大于 80%。此外,CART 决策树和顺序最小优化 (SMO) 为正常数据提供了 100% 的准确率,这些算法对于桥梁危机管理非常可靠。这意味着,可以使用此类机器学习方法在实时条件下管理桥梁。
由于计算能力的显著进步和优化算法(尤其是机器学习 (ML))的改进,人工智能 (AI) 的自动决策得到了广泛采用。复杂的 ML 模型提供了良好的预测准确性;然而,ML 模型的不透明性并不能为它们在贷款决策自动化中的应用提供足够的保证。本文提出了一个可解释的人工智能决策支持系统,通过信念规则库 (BRB) 实现贷款承保流程的自动化。该系统可以容纳人类知识,也可以通过监督学习从历史数据中学习。BRB 的层次结构可以容纳事实规则和启发式规则。该系统可以通过激活规则的重要性和规则中先行属性的贡献来解释导致贷款申请决策的事件链。抵押贷款承保自动化的商业案例研究表明,BRB 系统可以在准确性和可解释性之间提供良好的权衡。规则激活产生的文本解释可以作为拒绝贷款的理由。申请的决策过程可以通过规则在提供决策中的重要性及其先行属性的贡献来理解。