在神经肿瘤学中,MR成像对于获取详细的脑图像至关重要,以鉴定肿瘤,计划治疗,指导手术干预并监测肿瘤的反应。AI在神经影像学方面的最新进展在神经肿瘤学方面具有有希望的应用,包括指导临床决策和改善患者管理。但是,缺乏对AI如何进行预测的明确性阻碍了其临床翻译。可解释的AI(XAI)方法旨在提高信任度和信息性,但其成功取决于考虑最终用户(临床医生)的特定背景和偏好。以用户为中心的设计(UCD)在迭代设计过程中优先考虑用户需求,并涉及用户,提供了设计针对临床神经肿瘤学量身定制的XAI系统的机会。本综述着重于神经肿瘤患者管理的MR成像解释的交集,可解释的用于临床决策支持的AI以及以用户为中心的设计。我们提供了一种组织必要概念的资源,包括设计和评估,临床翻译,用户体验和效率增强,以及改善神经肿瘤患者管理的临床结果的AI。我们讨论了多学科技能和以用户为中心的设计在创建成功的神经肿瘤学系统中的重要性。我们还讨论了以人为中心的决策过程中嵌入的可解释的AI工具,并且与完全自动化的解决方案不同,可能会增强临床医生的绩效。遵循UCD原则以建立信任,最大程度地减少错误和偏见,并创建适应性的软件有望满足医疗保健专业人员的需求和期望。
主要关键词