序列号 细菌分离物 透明区 (mm) 1. SSCL1 7 2 SSCL2 7.5 3 SSCL3 7 4 SSCL4 8.1 5 SSCL5 9 6 SSCL6 8.5 7 SSCL7 8.3 8 SSCL8 7 9 SSCL9 7.8 10 SSCL10 14 11 SSCL11 8.2 12 SSCL12 7.1 13 SSCL13 9 14 SSCL14 11 15 SSCL15 8.3 16 SSCL16 8.4 仅产生透明区超过 5mm 的分离物被挑选出来并进行二次
背景和目的:由于多药耐药性(MDR)的出现,真菌感染的增量,特别是由于念珠菌物种的增加。因此,识别新型药物靶标以避免MDR问题需要立即注意。代谢途径,例如甘酰基循环(GC),该途径利用了关键酶(等酸酯裂解酶[ICL]和苹果酸合酶[MLS]),使白色念珠菌能够在葡萄糖缺陷条件下适应。这项研究发现了GC破坏对白色念珠菌作为人类致病真菌的主要MDR机制的影响。材料和方法:出于研究的目的,在存在底物若丹明6G(R6G)和尼罗红色的情况下,通过表型敏感性以及R6G细胞外浓度(527 nm)评估了外排泵活性。此外,通过氢氧化钾水解法估算了麦角固醇含量。也通过通过酸水解释放的葡萄糖胺的吸光度(520 nm)来实现几丁质的估计。结果:结果表明,ICL酶基因(ΔICL1)的破坏导致属于ATP结合盒超级家族的多药物转运蛋白的外排活性受损。进一步表明,ΔICL1突变体表现出减少的麦角固醇和几丁质含量。另外,所有废除的表型都可以在ΔICL1突变体的恢复菌株中挽救。结论:基于发现,GC影响的外排活动的破坏以及麦角固醇和几丁质的合成。但是,需要进一步的研究来理解和利用这一治疗机会。本研究首次表明代谢适应性与功能性药物外排,麦角固醇和几丁质生物合成有关,并验证了GC作为抗真菌靶标。关键字:念珠菌,几丁质,外排泵,麦角固醇,乙二基循环
摘要:几丁质及其衍生物壳聚糖是自然界中极为丰富的聚合物,存在于各种海洋和非海洋物种的外壳和外骨骼中。由于它们具有生物相容性、生物降解性、无毒性和非免疫原性等优良特性,它们因其巨大的潜在生物医学应用而受到关注。壳聚糖的多阳离子表面使其能够与药物分子形成氢键和离子键,这是其最有用的特性之一。由于壳聚糖具有生物相容性,因此可用于药物输送系统。壳聚糖基纳米粒子的开发也促进了壳聚糖作为局部输送药物的药物输送系统的重要性。此外,几丁质可用于癌症治疗,作为将抗癌药物输送到特定部位的载体,并通过降低细胞活力发挥抗增殖作用。最后,壳聚糖可用作伤口敷料,以促进皮肤上皮细胞的更快再生和成纤维细胞的胶原蛋白生成。正如本综述中讨论的那样,几丁质和壳聚糖在医学领域有着多种应用。认识到这两种聚合物的生物医学应用对于组织工程和纳米生物技术的未来研究至关重要。
摘要:真菌病原体是显着的破坏植物的微生物,对世界作物的产量构成了威胁。几丁质是真菌细胞壁的关键成分和可以通过特定植物受体识别的保守的MAMP(与微生物相关的分子模式),从而激活了几丁质触发的免疫力。在大米和拟南芥等植物中众所周知,特定受体对几丁质感知的分子机制在许多其他植物中也相似。成为植物病原体,真菌必须抑制几丁质触发的免疫的激活。因此,真菌病原体已经发展了各种策略,例如预防几丁质消化或干扰植物几丁质受体或几丁质信号,这些信号在大多数情况下涉及真菌蛋白的分泌。由于几丁质免疫是一种非常有效的防御反应,因此这些真菌机制被认为可以密切协调。在这篇综述中,我们首先概述了当前对金蛋白触发的免疫信号传导和用于抑制其抑制的真菌蛋白的理解。第二,我们讨论了在真菌生物营养中运行的机制,例如白粉病真菌,尤其是在模型物种podosposphaera xanthii中,这是瓜糖粉中粉状霉菌的主要因果剂。在真菌发病机理和促进粉状霉菌疾病的背景下,讨论了与免疫原性差异寡聚物的修饰,降解或隔离有关的关键作用。最后,还讨论了这种基本知识用于开发针对白粉病真菌的干预策略。
在研究和工业量表上进行了广泛的研究和利用。但是,它们在光子技术中的使用非常有限。近年来,纳米和生物技术的发展已经开放了在广泛的应用中使用生物聚合物作为实际光子设备的可能性,尤其是针对基于蛋白质和多糖的生物聚合物。自然界研究最多的调查生物聚合物的病例之一是几丁质。几丁质是许多生物体的外骨骼,翅膀和细胞壁中存在的多糖(图1)。光学上,几丁质呈现一个同质反向指数(约1.55),在VIS中吸收过失。从现在开始的几十年后,该领域的开创性作品表明,几丁质形成了复杂的纳米结构,例如3D光子晶体[2],该结构促进了基于这些结构的仿生设备的发展(图1)[3]。然而,尚未实现几丁质光子纳米结构的生长。尽管几丁素有趣的是,可能是研究最多的
几丁质是 β-1,4-连接的 N-乙酰葡萄糖胺 (GlcNAc) 的线性均聚物,对细胞活力至关重要。几丁质由膜定位的几丁质合酶家族(Chs1 至 3 和白色念珠菌中的 Chs8)合成,其中 Chs1 是必需的 [1]。多抗霉素和日光霉素是 Chs 酶的强效抑制剂,由于结构相似,它们会与 Chs 底物 UDP-GlcNAc 竞争 Chs 结合,但对整个细胞的作用有限。日光霉素 Z 对引起呼吸道感染的球孢子菌有效。该药在感染后 2 天将真菌肺部负担降低了 6-log 40,但由于缺乏资金,临床试验被终止 [1,2]。参与几丁质合成的酶具有专门的功能,但在特定条件下可能在功能上冗余。此外,Chs 家族成员之间蛋白质结构的细微差异使高效几丁质合酶抑制剂的开发变得复杂。例如,Chs1 特异性抑制剂 RO-09-3143 可阻断 Chs1 形成隔膜并抑制细胞生长,但 Chs1 抑制仅在 chs2 Δ 缺失突变体中致死,表明功能冗余 [3]。其他几丁质合酶抑制剂(如 3-取代氨基-4-羟基香豆素衍生物)也被发现具有抗真菌活性 [4],但尚未用于临床。
弧菌物种是海洋原核生物,居住在多种生态壁ches,定居非生物和生物表面。这些细菌是全球碳循环中的重要参与者,吸收了数十亿吨的碳(和氮)代谢物。对包括几丁质酶,糖转运蛋白和修饰酶的过程的许多细菌蛋白进行了很好的研究。然而,在存在几丁质的存在下,遗传功能相互作用和主要驱动因素是主要的碳源。为了解决这个问题,我们进行了转座子测序(TN-Seq),以确定在几丁质上生长在几丁质上作为唯一碳源的颤动性溶血性突变体的遗传适应性。以及验证与几丁质代谢相关的已知颤音基因,我们的数据新确定了未分类的OPRD样进口壳质蛋白和HEXR家族转录调节剂的重要作用。此外,我们在功能上暗示了HEXR在调节副溶血性环境生存的多个生理过程中,包括碳同化和细胞生长,生物膜形成和细胞运动。在营养限制条件下,我们的数据揭示了对丝状细胞形态中HEXR的要求,这是副溶血性环境适应性的关键特征。因此,由HEXR介导的重要进口孔蛋白和基因组调节支持多个生理过程,以实现弧菌念珠菌的生长和环境适应性。
寡糖是具有广泛应用的重要类别。生物学,寡糖是活细胞上的识别或鉴定位点,被认为具有生物学活性和潜在的治疗作用(Muanprasat和Chatsudthipong 2017)。,此外,寡糖已被用作多糖的模型化合物:大提琴或奇托 - 寡聚物的单晶提供了纤维素和几丁质晶体结构的必要信息(Buleon和Chanzy 1978; Cartier等1978; Cartier等。1990; Persson等。 1992; Helbert and Sugiyama 1998)。 尤其是,Chanzy及其同事清楚地表明了基于电子显微照片和电子衍射图在由纤维素,几丁质和奇托斯氏菌低聚物制成的单晶上的链条取向(Buleon和Chanzy 1978; Cartier Cartier1990; Persson等。1992; Helbert and Sugiyama 1998)。尤其是,Chanzy及其同事清楚地表明了基于电子显微照片和电子衍射图在由纤维素,几丁质和奇托斯氏菌低聚物制成的单晶上的链条取向(Buleon和Chanzy 1978; Cartier
通过短肽桥与Murnac残基交叉连接的N-乙酰葡萄糖和N-乙酰基氨基酸(MURNAC)的多个单位网络。真菌CWS(FCW)由几层原纤维组成。组成因物种而异,但是它们主要组成(1→3)/(1→6) - 𝛽 -glucan,(1→3) - 𝛼 -glucan,几丁质和糖蛋白。它由80-90%的糖蛋白,脂质和其他次要成分组成。酵母CWS由(1→3)/(1→6)-Glucan,甘露蛋白和几丁质组成。红色藻类含有带有亚硫酸盐残基的星系杂聚物以及甲基化的糖,甘露糖,阿拉伯糖和核糖等次要成分。但是,基本的构建块是醛酸3- o-(α-d-
概述了几丁质和壳聚糖生物聚合物在经济和环境可持续发展的开发杆上的潜力(尤其是在发展中国家)的潜力。已经考虑并简要概述了它们的以下优势:(i)几丁质的自然来源在整个星球上具有广泛的分布,通常可以作为廉价的废物供应; (ii)这些材料的多功能性,以及在农业,水处理,食品工业,环境,石油,医疗保健,能源,技术等的各种领域中的应用,进行了一些试验甚至行外的试验; (iii)这些材料的生产和使用可以促进某些国家的内生能力的进步,以创建自己的技术,并在敏感部门(即卫生服务,食品,水处理等)中基本和高级生成产品和应用,除了促进将学术领域与其他部门与其他行业融合在一起之外。