摘要 肺动脉高压(PAH)是一种以肺动脉压力增高和肺小动脉重塑为特征的慢性肺血管疾病。一些研究发现了交感神经(SN)与PAH发病机制的关系。本文旨在阐述肺动脉内SN的部位和成分,以及肺动脉去神经支配(PADN)的不同方法和效果。研究表明SN主要分布在主肺动脉及肺动脉分叉处,破坏SN的方法有化学方法、手术方法和导管方法3种。PADN可显著迅速降低肺动脉压力,改善血流动力学变化,从而缓解PAH。PADN已被公认为治疗PAH患者,特别是对药物难治性PAH的一种有前途的有效方法。但需要进一步扩大临床研究来证实肺动脉中SN的准确分布和PADN的疗效。(Cardiol J 2022; 29, 3: 381–387)关键词:肺动脉高压,肺动脉失神经支配,交感神经
抽象的疟疾寄生虫在很大程度上依赖于快速,高保真蛋白的合成来感染和复制人类红细胞,使翻译成为新抗疟药的有吸引力的靶标。在这里,我们已经确定了来自冰冻的恶性疟原虫感染的人类红细胞的13个构象和组成状态的PF 80S核糖体的原位结构。我们观察到八个主动翻译中间体,使我们能够定义天然疟疾翻译延伸周期,令人惊讶的是,在循环的解码阶段中,该循环呈分叉,以前尚未描述。在存在疟疾特异性翻译抑制剂的情况下,对这些状态中核糖体分布的扰动的检查表明,抑制剂会阻碍PF EEF2和PFEEF1α与核糖体相互作用。我们将原位冷冻数据与蛋白质组学和超微结构数据集成在一起,以更深入地了解疟疾翻译,这将为新疗法的开发提供信息。
摘要:DCIA是祖先细菌复制性解旋酶加载剂,在进化过程中,噬菌体起源的DNAC/I负载器在进化过程中替换。DNAC通过打开六聚体环,帮助解旋酶在DNA上加载,但是DCIA负载的机理仍然未知。我们通过电子显微镜,核磁共振(NMR)光谱和生物化学实验证明,折叠成KH样结构域的DCIA不仅在非典型模式下与单链,而且是双链DNA相互作用。长α-helix 1的某个点突变表明了其在DCIA相互作用中对于模仿单链,双链和分叉DNA的各种DNA底物的相互作用的重要性。其中一些突变也影响了DCIA对解旋酶的负载。我们提出了一个假设,即DCIA可以通过在两个DNA链之间进行插入以稳定它来成为DNA伴侣。这项工作使我们能够提出DCIA与DNA的直接相互作用可以在解旋酶的负载机理中发挥作用。
在非线性物理系统中识别逃避直接实验检测的隐藏状态很重要,因为干扰和噪音可以将系统置于隐藏状态,并带来有害后果。我们研究了一个空腔岩石系统,其主要物理学是光子和镁kerr效应。在数值实验中扫描分叉参数(如在实际实验中所做的那样)导致具有两个不同稳定稳态状态的磁滞回路,但是分析计算在环路中赋予了第三个折叠的稳态“隐藏”,这导致了隐藏可粘性的现象。我们提出了一种实验可行的控制方法,将系统驱动到折叠的隐藏状态中。我们通过三元腔镁质系统和基因调节网络证明了这种隐藏的多稳定性实际上很普遍。我们的发现阐明了非线性物理系统中隐藏的动力状态,这些状态不是直接观察到的,但可以在应用中带来挑战和机遇。
摘要。一维气候能量平衡模型(1D EBM)是基于地球能量预算的划定全球温度启用的简化气候模型。我们检查了一类一类EBM,该类别作为与相关变量问题的Euler-Lagrange方程相对应的抛物线方程,涵盖了空间不均匀模型,例如与纬度依赖性扰动性的贝甲。。我们还将最小化器的解释为时间依赖性和随机1D EBM的“典型”或“可能”解决方案。然后,我们检查了值函数之间的连接,该值函数代表了客观功能的最小值(在所有温度下),被视为温室气体浓度的函数和全球平均温度(也是温室气体浓度的函数,即分叉图)。特别是,只要有独特的最小化脾气,但全球平均温度持续变化,但是共存的最小化器必须具有不同的全球平均温度。此外,对于温室气体浓度,全球平均温度不稳定,其跳跃必须必须向上上升。我们发现对更一般的空间异质反应 - 扩散模型的适用性也被解散了,对我们的结果的物理解释也是如此。
•刚性多体流体结构相互作用(RMB-FSI),系统的多物理系统(SOS),计算多机2D/3D动态系统,集团参数建模以及2D/3D机械设备设计,并应用于浮动的离岸风力涡轮机(FOWT),无效的轴线(FOWT) (WEC)。•非线性动态,分叉,混乱理论,线性/非线性谨慎/连续系统中的机械振动,应用于振动吸收,非线性能量水槽,旋转系统中的能量收集,MEMS和NEMS共振器共振器的设计,以及旋转机器的健康监测和损坏。•非线性自适应/鲁棒控制系统设计,数字控制,机器人技术,机器人和自动化,并在自主系统下应用,在启动系统,四轮驱动器,腿部机器人,生物启发的机器人和康复机器人之下。•耦合的微分方程的非线性时间周期系统的扰动分析,并应用于自激发和参数激发的系统,陀螺仪系统,非自我学系统以及暴露于非守护力的弹性结构。奖励和荣誉
实现具有吸引人的性能指标和与硅光子平台兼容的紧凑型芯片脉冲激光器是当代纳米光子学的重要目标。在这里,是否可以将2D材料用作增益和饱和吸收介质来实现紧凑型综合Q-用被动Q开关的纳米光激光器的基本问题,并通过检查广泛的2D材料家族来提出和解决。通过开发涉及半古典速率方程的时间耦合模式理论框架来进行研究,该框架能够通过2D材料严格处理增益和可饱和的吸收,从而可以执行稳定性和分叉分析涵盖广泛的参数空间。可以通过不同的2D材料获得脉冲训练指标(重复速率,脉冲宽度,峰值功率)的范围。我们的工作表明,使用2D材料增强的纳米光腔可以使被动q交换,重复速率不得超过50 GHz,短脉冲持续时间降至几个picseconds,而峰值功率超过了几毫升。如此有吸引力的指标,以及2D材料的超薄性质以及电气调整其性质的能力,证明了提出的紧凑和灵活的集成激光源的平台的潜力。
可以很容易地想象,在照顾多发性疾病或左主冠状动脉疾病(CAD)的患者时做出的最重要的决定是在冠状动脉导管实验室中做出的。在那里,会发生关键决策,包括确定最佳血运重建策略和血运重建时间的确定性,并适当关注解剖学综合性和疾病负担。实施最佳证据和血运重建指南,除了确定双重抗血小板疗法的持续时间外,还要纳入成像和适当的分叉策略,这对于确保最佳的长期结果至关重要。这些复杂的患者需要训练有素的多学科高危心脏团队。但是其他哪些因素严重影响长期死亡率?在当前的欧洲干预期间,HARA等人1列出了来自语法的数据扩展生存研究,评估了预性外部生物学标志物对10年病情的影响。在这项研究中,研究人员发现,我们为导管实验室和操作室以外的患者所做的事情极大地影响了长期死亡率。他们报告说,在语法患者中,10年死亡率的最大预测因子不是生物标志物,而是缺乏他汀类药物的使用。
在地中海地区提高柑橘的氮摄取效率,该农作物预先占主导地位,对于降低地下水污染和增强环境可使性至关重要。这与农场与分叉战略(欧洲绿色交易)目标保持一致,该目标旨在将矿物肥料的使用最多减少20%,并完全消除氮污染的土壤。在这种情况下,探索植物生长促进细菌以减少养分输入的潜力是一个有前途的机会。本研究的目的是评估单独接种的两种枯草芽孢杆菌菌株的作用,或与酿酒酵母结合使用15 N标记的肥料摄取效率和生理参数。个体接种对树水的积极影响,叶叶绿素浓度(Spad-values)和光合作用的prove摄,从而增强了树木的生长。肥料-15 N使用效率提高,磷和钾摄入也是如此。相反,在与S酿酒酵母共接种的树木中未观察到任何反应。因此,PGPB可以被认为是减少柑橘园合成肥料的一种有趣手段,从而最大程度地减少了环境影响并实现可持续生产实践。
我们引入了具有不对称临时免疫期和部分跨免疫力的两种元模型。我们根据菌株特异性的碱性繁殖数量,临时免疫力和交叉免疫性程度,从而获得了竞争性排除和菌株共存的明确条件。我们分叉分析的结果表明,即使两种菌株具有相似的基本繁殖数和其他流行病学参数,临时免疫期的差异以及部分或完整的交叉免疫也可以提供显着的竞争优势。为了分析动力学,我们引入了一个准稳态还原模型,该模型假设原始应变保持其流行稳态状态。我们使用线性稳定性分析,平面平面分析和Bendixson-Dulac标准完全分析了所得的平面混合开关系统。我们使用共同的模型和相关的模型与COVID-19的发病率数据相结合,重点介绍了三角洲(B.1.617.2),Omicron(B.1.1.529)和Kraken(XBB.1.5)变体。这些数值研究表明,尽管19 Covid-19的早期新型菌株具有显着接管和灭绝祖先菌株的趋势,但最近的菌株具有共存的能力。