微生物在其生态壁ches和自然宿主中受到各种物理,化学和生物学信号的多样性(Matilla等,2022; Webster等,2022)。这些信号的感知以及最佳响应的产生对于在高度竞争和挑战环境中的微生物生存至关重要。信号感知是通过广泛的信号转导系统(Gumerov等,2020; Matilla等,2022)进行的,这些调节性级联反应的基因可以占细菌总基因组的10%以上(Galperin,2018; Ghumerov等,2018; Ghumerov等,2020年)。值得注意的是,环境细菌包含特别高的信号转导系统(Alexandre等,2004; Galperin,2018; Gumerov等,2020),很可能
荧光滴定表明,人类低分子量激肽原 (LK) 能以高亲和力结合两分子的蛋白酶 L 和 S 以及木瓜蛋白酶。相比之下,第二分子的蛋白酶 H 的结合要弱得多。通过滴定法(监测酶活性损失和沉降速度实验)证实了 2:1 的结合化学计量。蛋白酶 L 和 S 与木瓜蛋白酶的结合动力学表明,两个蛋白酶结合位点的结合速率常数 k,,,,, = 10.7-24.5 x 106 M" sI 和 k,,,,, = 0.83-1.4 x 106 M" s-'。将这些动力学常数与完整 LK 及其分离结构域的先前数据进行比较,表明结合较快的位点也是结合较紧的位点,位于结构域 3 上,而结合较慢、亲和力较低的位点位于结构域 2 上。这些结果还表明,两个结合位点之间或来自激肽原轻链的蛋白酶结合没有明显的空间障碍。
势能(超)表面描述分子系统电子态的能量及其随原子核位置变化而变化,形成分子几何的“能量景观”。它是分析分子构象、过渡态和化学反应动力学的重要工具(Thru lar 等人,1987 年)。在只有两个原子的双原子分子中,原子核的位置只能用一个坐标表示,因此势能表面简化为势能曲线 (PEC)。每条曲线对应一个电子态的群表示和角动量。数据集中核间距离的范围取决于所述系统。我们的数据集由几个选定的双原子分子系统组成,由碱金属原子对创建。这种二聚体在超冷(内部温度在 mK 范围内)分子系统、玻色-爱因斯坦凝聚和化学反应相干控制的应用中特别受关注。强极性超冷分子的可能应用包括利用极性分子之间的长距离电偶极-偶极相互作用来设计光学量子系统。极性分子的内部自由度可用作量子信息的媒介。在强激光场产生的光学晶格中创建、存储和控制此类分子可用于构建量子计算机(Pazyuk,2015 年)。
一家学校理工学院,加拿大蒙特利尔b实验室C查尔斯·库仑(Charles Colomb) INP,CNRS,Univers de Toulouse,118 De Narbonne,31062 Toulouse,Cedex 9,法国H Karlsruhe技术研究所(KIT) 法国。 e-mail: etienne.gaufres@cnrs.fr k Humboldt-universita zu Berlin, Germany L Lumin, Universite Ét Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France M University of Montreal, Canada N University of Vienna, Austria o University of Paris, Ecole Normale Paris, PSL, PSL, Free University of德国柏林,Q工程和信息学系,意大利佩加索大学,意大利的佩加索大学。 请参阅do:https://doi.org/10.1039/d3cs00467h一家学校理工学院,加拿大蒙特利尔b实验室C查尔斯·库仑(Charles Colomb) INP,CNRS,Univers de Toulouse,118 De Narbonne,31062 Toulouse,Cedex 9,法国H Karlsruhe技术研究所(KIT) 法国。e-mail: etienne.gaufres@cnrs.fr k Humboldt-universita zu Berlin, Germany L Lumin, Universite Ét Paris Saclay, ENS Paris Saclay, Centrale Supelec, CNRS, Orsay, France M University of Montreal, Canada N University of Vienna, Austria o University of Paris, Ecole Normale Paris, PSL, PSL, Free University of德国柏林,Q工程和信息学系,意大利佩加索大学,意大利的佩加索大学。请参阅do:https://doi.org/10.1039/d3cs00467h
在过去的二十年里,冷分子研究从一个新兴领域发展成为一股强大的科学潮流,拓展了物理科学的视野 1 – 3 。科学界目前正在见证从早期的抱负到有影响力的科学成果和新兴技术的转变。从冷却分子到未探索的低能状态的开创性想法 4 , 5 为更成熟的目标驱动分子量子态控制追求开辟了道路 6 。化学相互作用的研究越来越详细,包括单个反应途径和共振 7 – 9 。分子复杂性已成为展示复杂量子控制和探索新兴现象的一个特征 10 – 15 。通过使用外部场操纵分子来实现具有长程、各向异性相互作用的可调多体哈密顿量的几种想法已经扩展了量子模拟的前景 16 – 20 。具有延长相干时间的分子现在设定了更严格的限制,为量子传感以及探索基本对称性和标准模型以外的新物理开辟了新天地 21 – 23 。此外,对复杂分子的越来越精确的控制恰好符合量子信息的新兴主题,它建立在微观量子系统的高保真操纵之上 24 – 27 。鉴于分子在广泛的物理过程中发挥的核心作用,冷分子领域的进展正在将来自不同学科的科学家聚集在一起。粒子物理学家对使用分子来寻找逃避粒子和场很感兴趣。凝聚态物理学家正在构建量子材料
摘要:静电相互作用对涉及一个或多种带电氨基酸的肽自组装的动力学途径和热力学结果造成了严重贡献。在蛋白质折叠方面有充分的理解,即将酸性/碱性侧链链条置于疏水微环境中时可能会改变其PKA,但尚不清楚单体肽单元的聚集在多大程度上从散装解决方案中汇总的程度在多大程度上可以改变其充电状态,并且在PKA值中如何改变他们的总成量会影响他们的总体影响力极大地淘汰。在这里,我们设计和分析了具有不同长度的碳纤维链的肽两亲物的两个溶液系统,以确定组装上质子化的因子。我们的结果表明,具有均匀分布,充满电的氨基酸的超分子纳米纤维模型过于简单。我们证明,通过分子动力学模拟,并通过实验结果验证,肽的不对称,不同的质子化状态会导致自组装后不同的纳米结构。结果给出了对它们自组装和阐明含有带电氨基酸的分子组装系统所需的肽两亲物质中静电相互作用的估计。
分子 nROH TPSA(Tot) ALOGPS_logP 1,1,1-三氯乙烷 0 0 2.45 1,2-二甲基苯 0 0 3.16 1,4-二甲基苯 0 0 3.15 1,7-二甲基黄嘌呤 0 72.68 -0.63 1-氯-2,2,2-三氟乙烷 0 0 1.82 1-羟基咪达唑仑 1 50.41 3.09 2,2-二甲基丁烷 0 0 3.74 2-甲基戊烷 0 0 3.6 3-甲基己烷 0 0 4.18 3-甲基戊烷 0 0 3.98 4-羟基咪达唑仑 1 50.41 3.05 对乙酰氨基酚 0 49.33 0.51 丙酮0 17.07 -0.29 氨基比林 0 30.17 0.94 异戊巴比妥 0 75.27 1.87 安替比林 0 26.93 1.18 布他西尼 0 64.43 3.05 环己烷 0 0 3.46 环丙烷 0 0 1.56 去甲丙嗪 0 45.2 4.28 去羟肌苷 1 93.03 -1.26 二乙二醇二乙烯基醚 0 27.69 1.26 恩氟醚 0 9.23 2.24 乙醇 1 20.23 -0.4 乙醚 0 9.23 1.12 乙苯 0 0 3.27 氟硝西泮 0 78.49 2.2 氟氧苯 0 9.23 1.7 氟烷 0 0 2.5 茚地那韦 2 118.03 3.26 异丁醇 1 20.23 0.6 异氟烷 0 9.23 2.3 异丙醇 1 20.23 0.04 甲索达嗪 0 72.69 3.83 甲氧氟烷 0 9.23 2.01 甲基环戊烷 0 0 3.15 甲基乙基酮 0 17.07 0.41 米氮平 0 19.37 2.9 间二甲苯 0 0 3.15 奈韦拉平 0 63.57 1.75 N-庚烷 0 0 4.33 N-己烷 0 0 4.02 去甲西泮 0 41.46 2.79
放射治疗和化疗药物在癌症治疗中的应用已显示出明显的抗肿瘤作用,但也有局限性(由于对肿瘤细胞缺乏选择性而产生显著的副作用、产生耐药性以及发生继发性恶性肿瘤)。因此,人们大力推动替代疗法(如免疫疗法)的研究和开发,以寻找对转化细胞具有更高特异性且非特异性毒性更低的疗法。免疫疗法的优势在于其特性(识别细胞膜上的特定靶标),这些特性完全独立于化疗和放疗所基于的参数。这导致副作用的叠加和对化疗和放疗有抗性的细胞克隆的细胞毒性不受影响。今天,受埃尔利希“魔法子弹”概念的启发,最有前途的研究方法之一是将药理活性分子与载体(主要是抗体)连接起来,以便选择性地递送到靶细胞。这些杂合物主要应用于癌症治疗领域的研究 [ 1 ]。因此,大多数免疫治疗方法都集中于针对癌细胞表面的特定抗原。这种方法的一个基本要求是靶分子局限于要破坏的细胞群,或者至少靶分子不存在于干细胞或其他对生物体生存至关重要的细胞类型中。抗体是最常用的载体,因为它们在血液中稳定,并且对靶抗原具有亲和力和亲和力。许多不同的分子已被用作毒性部分;研究最多的是毒素(细菌或植物)、药物、放射性核素和人类酶。最常用的细菌毒素是假单胞菌外毒素 A (PE) [ 2 ] 和白喉毒素 (DT) [ 3 ],它们通过 NAD 依赖的延长因子 2 的 ADP 核糖基化抑制翻译,导致细胞死亡。最常用于治疗目的的植物毒素是核糖体失活蛋白 (RIP) [ 4 , 5 ],主要是蓖麻毒素 [ 6 ] 和皂草毒素 [ 7 ]。RIP 也称为多核苷酸:腺苷糖基化酶 [ 8 ],因为它们能够从许多不同的多核苷酸底物中去除腺嘌呤,通过多种机制导致细胞死亡 [ 9 – 11 ]。本期特刊汇集了五篇科学文章,重点介绍了基于抗体的毒素和其他活性分子对抗恶性细胞的知识进展,从而揭示了它们在抗癌治疗中的潜力。如上所述,识别/选择有效靶标是针对特定癌症进行免疫治疗的战略重要行动。连接蛋白细胞粘附分子 4 (NECTIN4) 是皮肤鳞状细胞癌的潜在治疗靶标,第二种最常见的皮肤癌。在大多数皮肤鳞状细胞癌研究组织和 A431 细胞系的质膜上均发现了 NECTIN4 的表达。NECTIN4 被证实在调节细胞间相互作用、皮肤鳞状细胞癌细胞的迁移和增殖中发挥作用 [12]。前列腺特异性膜抗原 (PSMA) 是一种可靠的标记物,非常适合前列腺癌 (PCa) 的成像和治疗。抗 PSMA 抗体的有效性
摘要:功能性分子的发现是一个昂贵且耗时的过程,小分子治疗药物发现成本的上升就是一个例证。在早期药物发现中,一类越来越受关注的技术是从头分子生成和优化,而这种技术的发展得益于新的深度学习方法的发展。这些技术可以提出新的分子结构,旨在最大化多目标函数,例如,作为针对特定靶点的治疗的适用性,而无需依赖于对化学空间的强力探索。然而,由于对可合成性的无知,这些方法的效用受到阻碍。为了强调这一问题的严重性,我们使用数据驱动的计算机辅助合成规划程序来量化最先进的生成模型提出的分子无法轻易合成的频率。我们的分析表明,尽管这些模型在流行的定量基准上表现良好,但在某些任务中它们会生成不切实际的分子结构。综合复杂性启发法可以成功地将生成偏向于综合可处理的化学空间,尽管这样做必然会偏离主要目标。该分析表明,为了提高这些模型在实际发现工作流程中的实用性,有必要开发新的算法。■ 简介
目的:目前的系统综述旨在合成最近发表的随机试验(RCT)可用数据,研究了新颖的,口服的,口服的,小分子的小葡萄糖肽1受体激动剂(GLP-1RAS)或Forglipliplon和forggliplipron和forggliplipron和forggliplipron和forggliplipron和ob ob ob ob ob ob ob ob ob ob ob ob ob ob,方法:文献搜索是通过Medline(通过PubMed),Cochrane库和Scopus进行的,直到2023年8月16日。进行了双重独立研究选择,数据提取和质量评估。证据与随机效应荟萃分析合并。结果:完全分析了七个RCT中的1037名患者。根据Cochrane协作工具(ROB2),所有RCT的偏见风险较低。与对照组相比,T2DM患者的HBA1C的新型GLP-1RA导致HBA1C显着降低(MD = - 1.03%; 95%CI = [ - 1.29, - 0.77]; P <0.001)。与对照组相比,T2DM或肥胖症患者的体重减轻也明显更大(MD = - 3.26 kg; 95%CI = [ - 4.79, - 1.72]; P <0.001和MD = - 7.52 kg; 95%CI = [ - 14.63,-0.41; p = 0.0.038; 0.25)。关于安全性,新型GLP-1RA对严重低血糖症或严重不良事件的几率(OR = 0.34; 95%CI = [0.09,1.31]; P = 0.11和OR = 0.95; 95%CI; 95%CI = [0.39,2.34]; P = 0.91; p = 0.91;分别为astent of tosem of(p = 0.91; 2.57; 95%CI = [1.49,4.42];结论:初步证据支持Orforglipron和Danuglipron在T2DM,肥胖或两者兼而有之的血糖控制和体重减轻方面有效。为了在对T2DM或肥胖症的药理学武器库中的潜在纳入之前,需要更深入地了解其效果,安全性和耐受性,以便对其有效性,安全性和耐受性提供更深入的见解。