摘要:COVID-19 已成为全球几乎所有国家医疗保健系统的全球风险,该病毒起源于中国武汉。迄今为止,尚无可用于治疗该疾病的特定药物。SARS-CoV-2 的确切来源尚不清楚,尽管早期病例与华南华南海鲜市场有关。本文报告了最近 FDA 批准的抗癌药物(Capmatinib、Pemigatinib、Selpercatinib 和 Tucatinib)的计算机分子建模,以了解它们对 COVID-19 靶标的抑制作用。将选定的抗癌药物对接在 SARS-CoV-2 主蛋白酶(PDB ID:6LU7)和 SARS-CoV-2 刺突糖蛋白(PDB ID:6M0J)上,以确定这些药物的结合能力。评估了药物的 ADMET 参数,此外,还进行了 DFT 计算以研究药代动力学、热参数、偶极矩和化学反应性描述符。讨论了对接能 (ΔG) 和相互作用的氨基酸残基。已经得出了有希望的分子对接结论,证明了所选抗癌药物具有开发用于对抗 COVID-19 的合理药物的潜力。对该药物的进一步优化可能会支持缓解疫情所急需的快速反应。
此预印本的版权所有者于 2020 年 10 月 10 日发布此版本。;https://doi.org/10.1101/2020.10.09.334136 doi: bioRxiv preprint
大型 SARS-CoV-2 刺突 (S) 蛋白是当前 COVID-19 候选疫苗的主要靶标,但可诱导非中和抗体,这可能导致疫苗引起的并发症或 COVID-19 疾病的加重。此外,在具有复制能力的病毒载体疫苗中编码功能性 S 可能会导致出现具有改变或扩大的趋向性的病毒。在这里,我们开发了一个安全的单轮弹状病毒复制子疫苗平台,用于增强 S 受体结合域 (RBD) 的呈递。采用结构引导设计来构建嵌合微刺突,该微刺突包含与源自狂犬病毒 (RABV) 糖蛋白 (G) 的跨膜茎锚序列相连的球状 RBD。编码微刺突蛋白的水泡性口炎病毒 (VSV) 和 RABV 复制子不仅允许抗原在细胞表面表达,还可以将其整合到分泌的非感染性颗粒的包膜中,从而将经典的载体驱动抗原表达和颗粒状病毒样颗粒 (VLP) 呈递结合在一起。单剂量原型复制子疫苗 VSVΔG-minispike-eGFP (G) 刺激小鼠产生高滴度的 SARS-CoV-2 中和抗体,相当于 COVID-19 患者体内的抗体滴度。使用相同复制子进行加强免疫可进一步增强中和活性。这些结果表明,弹状病毒微刺突蛋白复制子是使用具有复制能力的病毒和/或整个 S 抗原的疫苗接种方法的有效且安全的替代方案。
图 1 SARS-CoV-2 病毒、刺突、hAd5 [E1-、E2b-、E3-] 载体和候选疫苗构建体。 (a) 三聚体刺突 (S) 蛋白 ( ) 展示在病毒表面;核衣壳 (N) 蛋白 ( ) 与病毒 RNA 相关联。 (b) 受体结合结构域 (RBD) 位于 S1 区域内,其次是其他功能区域、跨膜结构域 (TM) 和位于病毒内的 C 端 (CT)。 (c) 所用的第二代人腺病毒血清型 5 (hAd5) 载体已删除 E1、E2b 和 E3 区域。所示的构建体为 (d) S 野生型 (S-WT)、(e) 具有增强 T 细胞刺激结构域 (S RBD-ETSD) 的 S-RBD、(f) S-Fusion、(g) N-ETSD 和 (h) 二价 hAd5 S-Fusion + N-ETSD;LP – 前导肽。
摘要 迫切需要开发疫苗来预防 SARS-CoV-2 感染并减轻 COVID-19 大流行。在这里,我们开发了两种基于改良安卡拉痘苗 (MVA) 的疫苗,它们表达在融合前状态稳定的膜锚定全长刺突蛋白 (MVA/S) 或形成三聚体并分泌的刺突的 S1 区 (MVA/S1)。两种免疫原都含有受体结合结构域 (RBD),这是抗体介导的中和的已知靶标。用 MVA/S 或 MVA/S1 免疫后,两种刺突蛋白重组体均诱导了针对纯化的全长 SARS-CoV-2 刺突蛋白的强 IgG 抗体。MVA/S 对纯化的 RBD、S1 和 S2 诱导了强烈的抗体反应,而 MVA/S1 诱导了对 RBD 区域外的 S1 区域的抗体反应。两种疫苗均在肺部诱发抗体反应,并与支气管相关淋巴组织的诱导有关。接种 MVA/S 而非 MVA/S1 疫苗的小鼠对 SARS-CoV-2 产生了强大的中和抗体反应,这与 RBD 抗体结合滴度密切相关。从机制上讲,S1 与 ACE-2 的结合很强,但在室温下长时间预孵育后会降低,这表明 RBD 会随时间发生变化。这些结果表明 MVA/S 是针对 SARS-CoV-2 感染的潜在候选疫苗。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 6 月 9 日发布。;https://doi.org/10.1101/2020.06.09.141580 doi:bioRxiv preprint
未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者(此版本于 2020 年 6 月 6 日发布。;https://doi.org/10.1101/2020.06.03.131755 doi:bioRxiv preprint
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者,此版本于 2020 年 5 月 26 日发布。;https://doi.org/10.1101/2020.05.25.115618 doi:bioRxiv 预印本
核衣壳蛋白 QIGYYRRATRRIRGG HLA-DRB1*11:01 IGYYRRATRRRGGD HLA-DRB1*11:01 GYYRRATRRRIGGDG HLA-DRB1*11:01 TPSTWLTYTGAIKL HLA-DRB1*07:01 DQIGYYRRATRRIRG HLA-DRB1*11:01 PQIAQFAPSASAFFG HLA-DRB1*09:01 WPQIAQFAPSASAFF HLA-DRB1*09:01 QIAQFAPSASAFFGM HLA-DRB1*09:01 IAQFAPSASAFFGMS HLA-DRB1*09:01 AALALLLLDRLNQLE HLA-DRB4*01:01,HLA-DPA1 03:01/DPB1*04, HLA-DRB3*01:0, HLA-DRB1*13:02, HLA-DRB1*11:0, HLA-DRB1*04:04, HLA-DRB1*01:01, HLA-DRB1*04, HLA-DPA1*02:01/DPB1*01:01, HLA-DPA1*01:03/DPB1*02:01, HLA-DRB1*04:05, HLA-DRB1*03:01, HLA-DRB1*08:02, HLA-DRB1*15:01, HLA DQA1*01:01/DQB1*05:01 ALALLLLDRLNQLES HLA-DRB4*01:01, HLA-DPA1*03:01/DPB1*04:02, HLA-DRB3*01:01、HLA-DRB1*13:02、HLA-DRB1*11:01、HLA-DRB1*04:04、HLA-DRB1*04:01、HLA-DRB1*01:01、HLA-DRB1*03:01、HLA-DRB1*04:05、HLA-DPA1*02:01/DPB1*01:01、HLA-DPA1*01:03/DPB1*02:01、HLA-DRB1*08:02、HLA-DRB1*15:01、HLA-DQA1*01:01/DQB1*05:01 PRWYFYYLGTGPEAG HLA-DRB1*07:01 RWYFYYLGTGPEAGL HLA-DRB1*01:01尖峰糖蛋白 AAEIRASANLAATKM HLA-DQA1*05:01/DQB1*03:01 NAQALNTLVKQLSSN HLA-DRB1*11:01 EVFNATRFASVYAWN HLA-DPB1*02:01、HLA DPB1*04:02、HLA-DPB1*05:01、 HLA-DQA1*01:02、HLA-DQA1*05:01、HLA-DQB1*03:01、HLA-DQB1*06:02、HLA-DRB1*01:01、HLA-DRB1*04:04、HLA-DRB1*04:05、HLA-DRB1*07:01、 HLA-DRB1*08:02、HLA-DRB1*09:01、 HLA-DRB1*11:01, HLA-DRB1*15:01, HLA-DPA1*03:01, HLA-DPB1*01:01, HLA-DPA1*01:03, HLA-DPA1*02:01 VFRSSVLHSTQDLFL HLA-DRB1*07:01, HLA-DRB1*01:01, HLA-DRB1*09:01, HLA-DRB1*04:05, HLA-DRB1*04:01, HLA-DRB1*03:01, HLA-DQA1*01:02/DQB1*06:02, HLA-DPA1*03:01/DPB1*04:02, HLA-DRB1*13:02, HLA-DPA1*02:01/DPB1*01:01、HLA-DRB4*01:01、HLA-DQA1*05:01/DQB1*02:01、HLA-DRB1*04:04、HLA- DPA1*01:03/DPB1*02:01、HLA-DQA1*05:01/DQB1*03:01 等位基因 HLA-DRB3*01:01、HLA-DRB4*01:01、HLA-DRB5*01:01 不可用,因此未将其纳入计算。