讨论 ...................................................................................................70 方法:体外研究 ......................................................................................................70 所含材料的选择 ..............................................................................................71 加工和表面处理的选择 ..............................................................................................74 测试的选择 ..............................................................................................................79 方法:系统评价 ......................................................................................................82 研究设计 ................................................................................................................83 结果 ......................................................................................................................83 表面处理 .............................................................................................................84 剪切粘结强度:表面处理如何影响粘结强度? .............................................................................................85 失效类型 .............................................................................................................86 剪切粘结强度:胶粘剂系统如何影响粘结强度? .............................................................................................87 双轴弯曲强度:表面处理如何影响弯曲强度? ................................................................
摘要 — 皮层内脑机接口 (iBCI) 为瘫痪患者提供了一种通过从大脑活动解码的信号来控制设备的方法。尽管这些设备最近取得了令人瞩目的进展,但它们的控制水平仍然无法达到健全人的水平。为了实现自然控制并提高神经假体的性能,iBCI 可能需要包含本体感受反馈。为了通过机械触觉刺激提供本体感受反馈,我们旨在了解触觉刺激如何影响运动皮层神经元并最终影响 iBCI 控制。我们为四肢瘫痪患者的后颈提供了皮肤剪切触觉刺激来替代本体感受。通过使用单丝测试套件评估触觉灵敏度来确定颈部位置。参与者能够以 65% 的准确率正确报告 8 个不同方向的后颈皮肤剪切。我们发现运动皮层单元对剪切刺激表现出感觉反应,其中一些单元对刺激有强烈的响应,并可以通过余弦形函数很好地建模。我们还演示了在线 iBCI 光标控制,该控制由解码的命令信号驱动,并带有连续的皮肤剪切反馈。与纯视觉反馈条件相比,当参与者获得触觉反馈时,光标控制性能略有提高,但效果显著。
摘要 — 皮层内脑机接口 (iBCI) 为瘫痪患者提供了一种通过从大脑活动解码的信号来控制设备的方法。尽管这些设备最近取得了令人瞩目的进展,但它们的控制水平仍然无法达到健全人的水平。为了实现自然控制并提高神经假体的性能,iBCI 可能需要包含本体感受反馈。为了通过机械触觉刺激提供本体感受反馈,我们旨在了解触觉刺激如何影响运动皮层神经元并最终影响 iBCI 控制。我们为四肢瘫痪患者的后颈提供了皮肤剪切触觉刺激来替代本体感受。通过使用单丝测试套件评估触觉灵敏度来确定颈部位置。参与者能够以 65% 的准确率正确报告 8 个不同方向的后颈皮肤剪切。我们发现运动皮层单元对剪切刺激表现出感觉反应,其中一些单元对刺激有强烈的响应,并可以通过余弦形函数很好地建模。我们还演示了在线 iBCI 光标控制,该控制由解码的命令信号驱动,并带有连续的皮肤剪切反馈。与纯视觉反馈条件相比,当参与者获得触觉反馈时,光标控制性能略有提高,但效果显著。
抽象目的:证明在瓣膜闭合期间预测的血剪力与血栓形成性之间的明确联系,这解释了组织和机械阀之间的血栓形成差异,并提供了一种实用的度量,以开发和完善假体瓣膜设计,以降低血栓形成性。方法:使用脉冲和准稳态流系统进行测试。使用校准预测的参考孔口区域的模拟光电电子学测量了预计开放阀区域(POVA)的时间变化。在心脏周期上确定的流速度等于瞬时体积流速除以POVA。对于闭合阀间隔,获得了准稳态的背压/流动测试的数据。性能通过得出的最大负和正闭合流速度排名,通过推断的速度梯度(剪切)证明潜在的临床血栓形成性。测试了临床,原型和对照阀。结果:多个测试数据集的血液剪切和凝块潜力指导经验优化和阀设计的比较。评估了用于软闭合和减少血栓形成电位的3-D打印原型阀设计(BV3D)。结论:在瓣膜闭合处的传单几何形状,流速和预测的剪切之间的关系,照亮了假体瓣膜血栓形成的重要来源。对这种关系表示赞赏,并基于我们的实验产生了比较数据,我们实现了瓣膜原型的优化,具有降低的血栓形成性。竞争利益:没有声明。财务披露:这项研究都是所有作者都在无偿的基础上进行的。关键词:假肢;实验室模拟;预计的开放阀区;瓣膜闭合,血栓形成;阀流速;反弹中央消息是阀门关闭流速的衍生实验室指标,提供了一种对阀门模型进行潜在血液损伤的方法。这些结果为先前的临床观察提供了新的见解和机理解释,在该观察中,主动脉和二尖瓣替代物的替代方案的血栓形成潜力和抗凝需求有所不同。这项研究提出了设计和评估新型机械阀模型的前进道路,以进行未来的开发。作为对机械和生物假体瓣膜的多次修改尚未解决与血栓形成和耐用性有关的慢性缺点,因此需要一个新的开发途径,以消除前者的血栓形成,并在后者中延长耐用性。透视假肢机械阀装置会导致血细胞损害。激活凝血级联反应是通过动态阀函数引发的。设计以关注阀门行为为重点的创新可能会降低瓣膜血栓形成潜力。我们的研究表明,阀门设计可以在经验上优化,重点是该阶段。对开放气门性能的重要性重点鼓励了长期存在的偏见,而对识别潜在血栓形成并发症至关重要的闭合相位持续存在。我们的多个数据集可用于挑战这种偏见。本研究比较了三个临床瓣膜和两个实验原型。机械阀的动态运动和衍生的区域流速受到阀几何形状的影响。关注瓣膜闭合动力学可能导致潜在的血栓形成原型阀的发展。实验室实验支持阀区域流速与瓣膜血栓形成潜力有关的假设。
18补充图1。通过半对准读数的软剪切引入的偏差。显示了六个读取与包含A/T变体的参考序列的比对。Bold Black T和Red A分别表示参考和替代等位基因。软剪裁由罢工表示。无软剪切,三个读数将支持参考(t)和替代(a)等位基因,从而导致无偏变体等位基因频率(VAF)为3/6 = 0.5。(a)读取R3被软剪切,直到获得参考的连续五次匹配为止。剪辑后,只有两个读数支持备用等位基因(a),而三个读取支持参考等位基因(t),导致偏置2/5 = 0.4的偏置VAF。(b)FIXVAF剪辑所有读数均按五个基础读取,无论它们是否包含变体位点还是支持参考或替代等位基因。读取支持参考等位基因和备用等位基因的读取现在被五个基部夹住。在此示例中,FIXVAF将计算2/4 = 0.5的VAF,因此消除了偏差。
丙烯酸义齿上衬里成分的分离很常见。因此,改善衬里和丙烯酸义齿之间的粘附至关重要。Piranha溶液用于治疗丙烯酸以增强键合强度。这项研究评估了Piranha溶液(过氧化氢H 2 O 2和硫酸H 2 SO 4的组合)对增强丙烯酸树脂和基于有机硅齿的软衬里的粘附强度的影响。八十种聚甲基丙烯酸酯(PMMA)样品的表面粗糙度(n = 20),剪切键强度(n = 20对),润湿性(n = 20)和硬度测试(n = 20)。样品被随机分为W组(无处理)和P组(使用Piranha溶液处理)。随后是有机硅软内衬。介绍仪,通用测试设备,光接触角和岸D持续时间设备分别用于分析表面粗糙度,剪切键强度,润湿性和硬度样本,然后研究故障机制。t检验用于分析数据。在P组(表面粗糙度,剪切键强度和润湿性)值(P≤0.05)中观察到显着变化。比对照组(W组)(W组)(P组)的Piranha溶液治疗组(P组)显示出更高的表面粗糙度,剪切键强度和润湿性,并且两组之间硬度值的变化不显着。这项研究的发现表明,使用Piranha溶液可以是增强PMMA表面特性的非常成功的方法,从而增强了有机硅软衬里的键合能力。
在此贡献中,提出了向金属透明材料的超快激光焊接。探索了将硼曲叶玻璃B33与Ti/Al6/V4连接到Ti/Al6/V4的激光脉冲能量,扫描速度和燃烧延迟依赖性,并实现了最大的剪切连接强度> 6 MPa,从而可以预见各种应用。探索对热周期的电阻率,将样品加热到不同的温度,并在冷却后测量残留的剪切连接强度。对于超过120°C的温度,连接的故障被发现。接下来证明了将融合二氧化硅与具有适应性疗法膨胀系数的金属相连的金属,以提高热周期稳定性。高点这种连接方法的普遍适用性,在此显示了半导体对金属的焊接,此处用硅和铜进行了说明。在窄带间隙半导体材料中,需要考虑使用高强度激光脉冲的非线性传播来优化界面处的沉积能量并增强所得连接。实现了最大的剪切连接强度> 2 MPa,证明了工业兼容性。
