产品规格 美国国际单位制 机械质量 3.8 lbm 1.72 Kg 输出步长 0.0625 度 空载时的转换率 >9 度/秒 环境温度下 4 度/秒时的输出扭矩 125 in-lb 14 Nm 无动力保持扭矩(最小值) 8 in-lbf 0.90 Nm 扭转刚度 20,000 in-lbf/rad 2,260 Nm/rad 电气 绕组电阻(标称值) 57 Ω 绕组电感(典型值) 30 mH 输入电压范围 24-32 Vdc 位置传感器 电位器 执行器 独立负载额定值(有关组合负载,请咨询 Sierra Space Engineering) 轴向 725 lbs 3.2 kN 径向 725 lbs 3.2 kN 力矩 350 lb-in 39.5 Nm 热工作温度 -22 °F 至 +149 °F -30 °C 至 +65 °C 非工作温度 -40 °F 至 +167 °F -40 °C 至 +75 °C 注意:此数据仅供参考,可能会更改。请联系 Sierra Space 获取设计数据。
简介:基于血浆中循环肿瘤脱氧纤维核酸(CTADN)的液体活检在监测肺癌的演变方面有望。ctadn的表达,其与临床病理参数的关系及其与肺癌通过图像的关联,使我们能够评估CTADN在监测手术可复原的肺癌方面的有用程度。这项研究的目的是评估CTADN分析对初始体育场中肺癌的实施的影响。方法:依次招募了47例初始肺癌患者的队列。只包括34名患者。所有患者均收集了组织样本和五种血液样本:术前,肺静脉,手术高,首次随访和最后一次随访。评估所有血液样本的CTADN表达。结果:平均而言,与术前,肺静脉矩和第一次随访相比,在患者手术中获得的液体活检中获得了最大CTADN产量(分别为p <0.0001,p <0.0001,p <0.0001)。将在最后一个接下来的液体活检与手术高的CTADN表达进行比较时,没有统计含义(p = 0.851)。六名可起作突变患者中有两名疾病进展。CTADN浓度在五个收获力矩中的浓度与四个临床病理学特征之间的相关性表明,术前时间和手术放电的患者的CTADN浓度显着降低[β= -16 734(-27 707; -5760; -5760; -5760); p = 0.003; β= -21 785(-38 447; -5123); p = 0.010]与肺静脉中的ctDNA浓度升高,在最后一个接下来-up [β= 8369(0.359; 16 378)中; p = 0.041; β= 34 402(12 549; 56 254); p = 0.002]全部置信度为95%。在组织活检中鉴定出可作用突变的情况下,在术前的六个患者血浆样品中的五个中发现了预期的突变,而在肺静脉时的六个患者血浆样品中的两个则发现了预期突变。结论:这项试验研究的结果表明,在患者的手术高手术中获得了最大ctDNA产量,并且术前的力矩是检测最初体育场中肺癌可起作用的CTDNA突变的最高灵敏度。关键词:早期癌症检测/方法;当前的肿瘤DNA;肿瘤的演出;突变;肺肿瘤;宽 - 尺度核苷酸测序
20 世纪 30 年代末,已有数架飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或轮毂制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,当自动驾驶仪启动时,就可以由自动驾驶仪施加飞行控制面位置设定点(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员对主要飞行控制装置产生的力变得至关重要。引入与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
湍流和阵风会导致施加在飞机结构上的空气动力和力矩发生变化,从而导致乘客不适,并且结构上必须设计能够支撑的动态载荷。通过设计阵风载荷缓解 (GLA) 系统,可以实现两个目标:第一,实现更高的乘客舒适度;第二,减少动态结构载荷,从而可以设计更轻的结构。本文提出了一种设计组合反馈/前馈 GLA 系统的方法。该方法依赖于多普勒激光雷达传感器测量的飞机前方的风廓线,并基于 H ∞ 最优控制技术和离散时间预览控制问题公式。此外,为了允许在这两个目标之间进行设计权衡(以实现设计灵活性)以及允许指定稳健性标准,引入了使用多通道 H ∞ 最优控制技术的问题变体。本文开发的方法旨在应用于大型飞机,例如运输机或公务机。模拟结果表明,所提出的设计方法在考虑测量的风廓线以实现上述两个目标方面是有效的,同时确保了设计灵活性以及控制器的稳健性和最优性。
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平的需求迅速变得至关重要。引入与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
摘要。在这项研究中,使用了密度功能理论(DFT)和时间依赖性密度功能理论(TD-DFT)方法,研究了硫代齐奈德富勒烯C 60纳米复合物的物理和化学特性。最重要的目标是增加C 60偶极力矩作为一种新型药物输送系统,以携带硫代齐奈德。在基态下使用了几个描述符,包括基于HOMO和LUMO轨道能,硬度,柔软度,化学势和Mulliken电荷的电化学性质。该纳米复合物的偶极矩约为2.61d,这表明其在极溶剂中中度溶解度。使用CAMB3LYP方法获得的UV-VIS频谱表明,在复合物形成后,吸收光谱的蓝移度约为= 24 nm。基于激发态的计算和第一个模式中的孔 - 电子理论,在复合物的不同吸收波长处观察到光诱导的电子传递(PET)现象。使用电子传递的Marcus理论,计算电子转移的激活的自由能和所有宠物的电子转移的自由能。
摘要。在这项研究中,使用了密度功能理论(DFT)和时间依赖性密度功能理论(TD-DFT)方法,研究了硫代齐奈德富勒烯C 60纳米复合物的物理和化学特性。最重要的目标是增加C 60偶极力矩作为一种新型药物输送系统,以携带硫代齐奈德。在基态下使用了几个描述符,包括基于HOMO和LUMO轨道能,硬度,柔软度,化学势和Mulliken电荷的电化学性质。该纳米复合物的偶极矩约为2.61d,这表明其在极溶剂中中度溶解度。使用CAMB3LYP方法获得的UV-VIS频谱表明,在复合物形成后,吸收光谱的蓝移度约为= 24 nm。基于激发态的计算和第一个模式中的孔 - 电子理论,在复合物的不同吸收波长处观察到光诱导的电子传递(PET)现象。使用电子传递的Marcus理论,计算电子转移的激活的自由能和所有宠物的电子转移的自由能。
20 世纪 30 年代末,已有多种飞机使用液压执行器实现端到端定位功能(起落架的伸展/收起、襟翼的展开/收起、发动机整流罩襟翼的打开/关闭)或用于机轮制动的力传递功能(见第 1 卷 [MAR 16b] 中的图 1.7)。对于主要飞行控制装置,还安装了液压执行器以及将飞行员动作传递到移动表面的电缆控制装置。这样,自动驾驶仪启动时就可以设定飞行控制面位置(见第 1 卷 [MAR 16b] 中的图 1.8)。由于飞机尺寸、速度和飞行时间的增加,降低飞行员为主要飞行控制装置产生的力量水平变得至关重要。引入了与飞行控制面偏转方向相反的翼片,无需使用机载动力源即可为飞行员提供帮助:在受到空气动力作用时,翼片会产生偏转力矩,使飞行控制面朝着预期的运动方向。这一概念的应用导致了几种变体 [LAL 02、ROS 00]:
飞机设计本质上是一项多学科工作,在此过程中,多个工程师团队之间必须交换数据和信息,每个团队都具有特定领域的专业知识。管理协作组之间的数据传输、可能的翻译和存储非常复杂且容易出错。采用标准化、以数据为中心的方案来存储所有数据可提高一致性并降低误解和冲突的风险。为了有效地实现这一点,必须首先努力在分析模块和数据档案之间开发合适的接口。此外,设计过程的每个阶段对设计和分析工具的保真度和分辨率都有不同的要求。对于稳定性和控制分析以及飞行模拟,需要生成用于空气动力、力矩和导数的查找表。不同的飞行分析工具需要不同的表格/输入格式。例如,代尔夫特理工大学开发的飞行分析器和模拟器 PHALANX [ 1 – 4 ] 需要一组三维力和力矩系数表,每个控制通道单独作用。多保真气动建模旨在以最佳的计算资源分配覆盖整个飞行包线的飞行状态参数空间。这又需要一个标准化的、以数据为中心的方案来托管数据,可用于各种
飞行控制系统可靠性和性能的不断提高导致技术复杂性急剧增加。这些系统的功能基于许多信息源,并且更容易受到错误和环境条件的影响。为克服这些异常而开发的制导、导航和控制系统缺乏飞行数据验证。风洞测试对于精确模拟飞行条件来说非常困难且成本过高。飞行测试和数据采集为控制系统的优化提供了基础,在估计误差和纠正飞机测量中发挥着重要作用。除非考虑所有任务配置和与整个任务相关的大量单个传感器,否则无法讨论研究飞机上的数据采集[6]。它必须集成到一个足够简单的系统中,以确保在最低限度的事先培训下进行正确的校准和安全操作。当今的空中交通量及其预期增长,以及不断上涨的燃料成本和降低燃料消耗等雄心勃勃的目标都可以通过减轻机身重量来实现。因此,在机上安装传感器时要考虑的主要方面之一是重量因素。通常,飞机(AC)的设计可承受飞行载荷(力和力矩),这些载荷是响应外部施加的力(空气动力学、惯性、推力等)而作用于 AC 结构上的。这些设计载荷是