摘要 - 我们提出了一个基于深厚的增强学习(DRL)的基于新颖的6多型,6多的抓地框架,该框架能够直接合成笛卡尔空间中的连续6-DOF动作。我们所提出的方法使用了直觉的RGB-D摄像头的视觉观察,我们通过域随机化,图像增强和分割工具的结合来减轻SIM到真实的间隙。我们的方法包括一个非政策,最大渗透性,演员算法,该算法从二进制奖励和一些模拟示例grasps中学习了政策。它不需要任何现实世界的掌握示例,对模拟进行了完全训练,并且直接部署到现实世界中而没有任何微调。The efficacy o f o ur a pproach i s d emonstrated i n simulation and experimentally validated in the real world on 6-DoF grasping tasks, achieving state-of-the-art results of an 86% mean zero-shot success rate on previously unseen objects, an 85% mean zero-shot success rate on a class of previously unseen adversarial objects, and a 74.3% mean zero-shot success rate on a class of previously看不见,具有挑战性的“ 6-DOF”对象。可以在https://youtu.be/bwpf8imvook
制造公司通过停用表现不佳的产品而面临越来越多的压力,以优化其生产组合。产品的需求各不相同:有些是由多个客户订购的高级跑步者,而另一些则是中等或低竞争者,具有有限或利基的上诉。一种纯粹基于收入的优化方法无法解决盈利能力,客户关系和供应链相互依赖性,可能会损害长期业务绩效。增强学习(RL)提供了动态和自适应解决方案。通过将问题作为一项顺序决策任务,RL通过探索盈利能力,客户满意度和运营效率之间的权衡来实现学习最佳产品相关策略。
哈德逊研究所由战略家赫尔曼·卡恩于 1961 年创立,它挑战传统思维,并通过国防、国际关系、经济、能源、技术、文化和法律等跨学科研究帮助管理面向未来的战略转型。
Chapter 3: Preparing for Fortify Software Security Center Deployment 39 High-Level Deployment Tasks 39 Deployment Overview 40 About Integrating Components with Fortify Software Security Center 42 The Fortify Software Security Center Installation Environment 44 Downloading Fortify Software Security Center Files 45 Unpacking and Deploying Fortify Software Security Center Software 46 Deploying Fortify Software Security Center to a Kubernetes Cluster 48 Fortify Software Security Center Kubernetes Deployment 49 Troubleshooting a Fortify Software Security Center Deployment to a Kubernetes Cluster 52 About the directory 55 Default directory locations 55 Changing the default locations 55 Directory contents 56 Migration of keystore file 58 Retrieving the keystore file 58 Migrating the keystore file 58 Applying the migrated keystore file 58 About the Fortify Software Security Center Database 59 About JDBC驱动程序59关于加强软件安全中心数据库数据库集合支持60安装和配置数据库服务器软件60监视磁盘I/O 60数据库用户帐户特权60使用Microsoft SQL Server Database 61 Windows no no no a Mysql Data inate of Mysql Database 62配置“ ORACER”的数据库数据库数据库62更高的数据库62插座”错误65分区oracle数据库以改进性能65关于强化软件安全中心数据库表和架构66关于播种构造强化软件安全中心数据库67永久删除强化软件安全中心数据库68
摘要。我们介绍了旨在以统一的方式解决连续空间均值场(MFG)和平均场控制(MFC)问题的增强学习算法的开发和分析。所提出的方法通过参数化的分数函数将参与者 - 批判性(AC)范式与平均场分布的表示形式配对,可以以在线方式进行有效更新,并使用Langevin Dynamics从产生的分布中获取样品。AC代理和分数函数被迭代更新以收敛到MFG平衡或给定平均领域问题的MFC Optimum,具体取决于学习率的选择。算法的直接修改使我们能够求解混合的均值场控制游戏。使用在有限的地平线框架中使用线性界面基准来评估我们的算法的性能。
摘要本文研究了基于音频的环境感知。该受试者可能会使车辆自动化受益,该自动化近年来引起了显着的兴趣。该技术允许对象在没有人类的情况下几乎或不完全移动。车辆自动化已用于自动驾驶,无人机以及许多家庭和工业机器人。通常,自主迁移率需要监视周围环境。监视使用传感器,例如雷达,相机,激光雷达和声纳,收集可见环境的信息以及障碍物的距离。但是,很少关注监测声学环境。通过使用诸如Unity之类的游戏引擎,可以通过虚拟环境在计算机上方便地研究该问题。可以根据声源的感知位置进行培训的代理商在环境中导航。通过机器学习方法启用了培训,例如深钢筋学习(DRL)。本论文评估了利用统一性在复杂环境中进行导航的智能音频感知者的智能音频感知者的可行性,并专门评估音频输入的培训。目的是通过使用音频来源构建虚拟环境,高级声音空间化和隔离统一的直接声音,以及在环境中具有声音源定位(SSL)功能的智能代理来实现的。空间化允许对环境中的自然声音传播进行建模,以使声音似乎从正确的位置到达。ssl,在工作中使用DRL实现,使代理可以推断出声音到达的方向。结果表明,在平均论文的平均工作量中,可以使用随便可用的插件来构建学习环境和统一训练团结的培训。此外,只要利用先进的声音空间化,就可以成功地对音频输入进行培训。
培训深层神经网络以最大程度地提高目标,已成为过去十年来成功机器学习的标准配方。如果目标目标是可区分的,则可以通过有监督的学习对这些网络进行操作。但是,许多有趣的问题并非如此。共同的目标,例如联合(IOU)的交集以及双语评估研究(BLEU)分数或奖励,无法通过有监督的学习来优化。一个常见的解决方法是定义可区分的替代损失,从而导致相对于实际目标的次优解决方案。强化学习(RL)已成为一种有前途的替代方法,用于优化深度神经网络,以最大程度地提高非差异性目标。示例包括通过人类反馈,代码生成,对象检测或控制问题对齐大语言模型。这使得RL技术与较大的机器学习受众相关。然而,由于大量方法以及通常高度理论上的表现,该主题是在很密集的时间。该专着采用了一种与经典RL教科书不同的替代方法。而不是专注于表格
培训深层神经网络以最大程度地提高目标,已成为过去十年来成功机器学习的标准配方。如果目标目标是可区分的,则可以通过有监督的学习对这些网络进行操作。但是,许多有趣的问题并非如此。共同的目标,例如联合(IOU)的交集以及双语评估研究(BLEU)分数或奖励,无法通过有监督的学习来优化。一个常见的解决方法是定义可区分的替代损失,从而导致相对于实际目标的次优解决方案。强化学习(RL)已成为一种有前途的替代方法,用于优化深度神经网络,以最大程度地提高非差异性目标。示例包括通过人类反馈,代码生成,对象检测或控制问题对齐大语言模型。这使得RL技术与较大的机器学习受众相关。然而,由于大量方法以及通常高度理论上的表现,该主题是在很密集的时间。该专着采用了一种与经典RL教科书不同的替代方法。而不是专注于表格
代理商的输入包括在先前时间段记录的车辆计数和平均速度,以及当前交通信号灯计划中阶段之间的绿时间分布。代理从预定义的列表中选择一个交通灯程序,每个程序仅在周期长度和绿色时间分布方面变化。此动作空间设计反映了现实世界中的交集管理约束。奖励功能,对于指导代理商的性能至关重要,使用负累积的等待时间作为反馈。这确保代理人不会优先考虑一种方法,而不是另一种方法。为了训练代理商,我们采用了良好的深入增强学习方法,深Q网络(DQN),并与Epsilon-Greedy Exploration策略结合使用。
•初始化环境:状态:{s 0,s 1,s 2},动作:{a 0,a 1},奖励:r(s 0,a 0)= -1,r(s 0,a 1)= +2,r(s 1,a 1,a 0)= +3,r(s 1,r(s 1,a 1,a 1,a 1)= +1,a 1,a 1,a 1,r(s s 2,r(s s 2,s raction)= 0,