1)Satyabrata Satpathy和Biplab Ganguli,“主奴隶制混乱的参数激发吊长的同步”,海报在第四届国际复杂动力系统和应用国际会议上发表,NIT Durgapur India(2016年)。
代数、实数和复数代数、实数和复数分析、几何与分析、几何与拓扑、概率与拓扑、概率与统计、模糊统计、模糊数学、随机数学、随机过程、微分过程、微分方程、运算方程、运筹学、金融研究、金融数学、离散数学、离散数学、软数学、软计算、人工智能、算法、智能、算法、数据库管理数据库管理系统、机器学习、系统、机器学习、云计算、云计算、动力系统、动力系统、数学物理、数学物理、量子计算、量子计算、工程经济学、工程经济学与会计、计算数学、生物数学、生物数学
摘要 电动动力系统具有与带有内燃机的传统动力系统不同的特性,并且需要非常规的飞机设计才能充分发挥其潜力。因此,本文介绍了一种识别带有电动动力系统的潜在飞机设计的方法。LuFo 项目 GNOSIS 的项目合作伙伴收集了动力系统架构、气动相互作用、机载系统和操作策略等领域的有前景的技术选项。从全球排放(CO 2 )、局部排放(NO X 和噪音)和运营成本方面评估了技术选项对通勤飞机的影响。评估考虑了 2025 年和 2050 年投入使用,并以参考飞机 Beechcraft 1900D 为基础。文献综述和简化计算使得能够对气动相互作用、系统和操作策略进行评估。初步的飞机设计工具通过引入“动力混合”和“动力分配”两个参数来评估不同的动力系统架构。随后,将兼容的技术选项汇编成技术篮,并使用与理想解的最短欧几里得距离和与最差解的最远欧几里得距离进行排序(按与理想解的相似性排序技术 (TOPSIS) 方法)。对 CS 23 法规的分析导致了高翼设计,并排除了在飞机尾部带有燃气涡轮的部分涡轮电动动力系统架构。对于 2025 年,选择了带有两个额外电动翼尖螺旋桨的部分涡轮电动动力系统。到 2050 年,串行混合动力系统使用燃气涡轮或燃料电池与电池组合,为机翼前缘的分布式电动推进器提供动力。在这两种情况下,飞机设计都包括电动环境控制系统、电动起落架和用于主飞行控制和起落架的电液执行器。
至少有一半的带有锂离子电池的船只将技术用作混合动力系统的一部分,并使用传统燃料(或可能是生物燃料)配对传统燃烧引擎。这些混合动力系统通常具有较小的电池组,主要是通过板载燃烧引擎或通过再生制动来充电。大约四分之一的锂离子电池容器使用插电式混合动力系统,该系统通常具有较大的电池组,能够储存更多的能量,并且除了在板载充电外,还可以从外部的“插入式”源中充电。使用锂离子电池的船只中约有20%使用纯电气系统,该系统完全在电力上运行,而无需任何燃烧发动机备用1。li-ion电池可以作为自动化功率管理系统的一部分进行合并,该系统可以优化燃油消耗和减少排放,或者作为备用电源系统,该系统可以提供无排放的替代方案,以符合日益严格的端口需求2。
摘要:本研究量化了使用潮汐流或风力涡轮机的混合系统的技术,经济和环境性能,以及短期电池存储和备用油发电机。该系统旨在部分位于位于英国海峡群岛的奥尔德尼岛上的石油发生器。每天每天提供每天四个发电周期的潮汐涡轮机。这种相对较高的频率循环将油发电机的使用限制为1.6 GWH/年。相比之下,较低的风能时期可以持续数天,迫使风混合动力系统长期依靠备用油发电机,总计2.4 gwh/年(高50%)。因此,假设在此期间,潮汐混合动力系统的燃油量减少了25万英镑/年,或者在25年的运营寿命中取代了640万英镑,则假设此期间的石油成本耗资成本。潮汐和风杂交系统的机油位移分别为78%和67%(与碳排放的减少相同)。对于风混合动力系统,要取代与潮汐混合动力系统相同数量的油,需要另外两个风力涡轮机。电池在高潮汐/风资源时期内存储多余的涡轮能量的能力取决于机会定期排放存储的能量。潮汐混合系统在松弛潮中实现了这一点。高风资资源的时期超过了高潮汐资源的时期,导致电池经常保持充满电,并限制过多的风力。因此,风混合动力系统会减少1.9 GWH/年,而潮汐涡轮机减少了0.2 gwh/年。如果这些利益超过其相对较高的资本和运营支出,那么潮汐型涡轮机减少缩减,燃料成本和碳排放的能力可能会提供在混合系统中实施的案例。
这四套系统分别位于 Westgold 的 Tuckabianna、Bluebird、Fortnum 和 Big Bell 设施,与 Westgold 在这四个地点的运营扩建项目同时交付。它们取代了六座柴油发电厂,预计每年将总共取代 3800 万升柴油,每年最多可减少 57,000 吨碳排放。
3. 前机器是非自治动力系统 [5]。一些前机器程序可以增加其程序复杂度,而对表示前机器程序所需的最小位数没有任何上限。这是一个至关重要的见解,因为停机问题的信息论证明的矛盾取决于图灵机的程序复杂度保持不变。通过研究 [2] 中的第 362-363 页或 [3] 可以轻松看到这一点。前机器的这一特性使它们能够规避 [2] 第 362-363 页证明中的矛盾。非自治动力系统表现出更有趣/更复杂的动态行为。当拓扑空间是连续体时,非自治系统肯定会表现出更复杂的行为。请参阅 [5] 中的第 2 章,标题为“非自治系统中周期点的不稳定性”,位于网页 https://www.aemea.org/msf.html 的底部附近。(单击稳定性:24-31 和稳定性:32-37。)
2. 电力系统:放射性同位素电力推进 (REP):利用钚-238 等同位素自然放射性衰变产生的热量来发电。REP 系统紧凑可靠,是小型到中型任务的理想选择,尤其是在可以接受长时间运行和低功率要求的情况下。它们通常提供 1 千瓦范围内的功率,足以为科学仪器和低推力推进系统(如离子发动机)供电。旅行者号、好奇号和毅力号等著名任务已成功展示了该技术和任务可靠性。裂变电力推进 (FEP):它们依靠核反应堆通过受控核裂变反应发电。与 REP 不同,FEP 系统可以产生更高的功率,通常在 8-10 千瓦之间,是前往谷神星、木卫一、土卫六和木卫二等潜在目的地的先驱无人任务的理想选择。与传统卫星相比,FEP 系统具有可扩展性和灵活性,可承载更大的有效载荷并缩短运输时间。研究表明,人们正在积极研究它们,以用于未来的载人火星任务和外行星探索,而长期高功率需求至关重要。将这项技术集成到先进的航天器中可以帮助航天器运行更长时间。3. 航天器裂变动力的主要优势:[1] 更高的功率输出:与传统的太阳能或化学动力系统相比,裂变动力系统可提供更高的功率水平,使高能科学仪器、先进的推进系统和栖息地支持系统能够运行,用于多行星和深空载人任务。[2] 高功率任务的成本效益:对于需要功率输出超过 1 kWe 的任务,裂变系统比放射性同位素动力系统更具成本效益。这使它们成为具有大量能源需求的长期任务的理想选择。[3] 高功率需求的低质量:当功率要求超过