摘要。栅极氧化物和碳化硅 (SiC) 之间的界面对 SiC MOSFET 的性能和可靠性有很大影响,因此需要特别注意。为了减少界面处的电荷捕获,通常采用后氧化退火 (POA)。然而,这些退火不仅影响器件性能,例如迁移率和导通电阻,还影响栅极氧化物的可靠性。我们研究了 NH3 退火 4H-SiC 沟槽 MOSFET 测试结构的氧化物隧穿机制,并将其与接受 NO POA 的器件进行比较。我们发现,NH3 退火 MOS 结构存在 3 种不同的机制,即陷阱辅助隧穿 (TAT)、Fowler-Nordheim (FN) 隧穿和电荷捕获,而在 NO 退火器件中仅观察到 FN 隧穿。隧穿势垒表明,有效活化能为 382 meV 的陷阱能级可实现 TAT。
摘要:本文通过计算位置熵和动量熵,研究了分数阶薛定谔方程(分数阶导数(0 < n ≤ 2))中两个双曲单阱势的 Shannon 信息熵。我们发现,随着分数阶导数 n 的减小,波函数会向原点移动;在分数阶体系中,即当 n 值较小时,位置熵密度局域化程度越来越严重,而动量概率密度非局域化程度越来越高。然后,我们研究了 Beckner Bialynicki-Birula–Mycieslki(BBM)不等式,发现虽然该不等式随着双曲势 U 1 (或 U 2 )的深度 u 的增加而逐渐减小(或增大),但 Shannon 熵对于不同的深度 u 仍然满足该不等式。最后,我们还进行了 Fisher 熵的计算,发现 Fisher 熵随势阱深度 u 的增加而增大,分数阶导数n减小。
摘要 — 我们报告了使用两种缓冲层用于毫米波应用的超薄(亚 10 nm 势垒厚度)AlN/GaN 异质结构的比较结果:1) 碳掺杂 GaN 高电子迁移率晶体管 (HEMT) 和 2) 双异质结构场效应晶体管 (DHFET)。观察到碳掺杂 HEMT 结构表现出优异的电气特性,最大漏极电流密度 I d 为 1.5 A/mm,外部跨导 G m 为 500 mS/mm,最大振荡频率 f max 为 242 GHz,同时使用 120 nm 的栅极长度。C 掺杂结构在高偏压下提供高频性能和出色的电子限制,可在 40 GHz 下实现最先进的输出功率密度(P OUT = 7 W/mm)和功率附加效率 (PAE) 组合,在脉冲模式下高达 V DS = 25V 时高于 52%。
1. Aiache Youssef。通过相互作用的量子比特探测器进行温度量子传感 2. Aimet Stefan。在量子多体领域实验探测兰道尔原理 3. Barros Nicolas。学习欠阻尼存储器的有效擦除协议 4. Benali Mohamed。腔体中黑洞投射的光轨迹和热阴影 5. Bertin-Johannet Bruno。通过能量过滤接触增加热载流子太阳能电池的提取功率 6. Bossard Elisa。容错无测量位翻转量子存储器的热力学分析 7. Cerisola Federico。由于量子寿命展宽导致的额外擦除成本 8. Chang Derek。多时间量子过程中的信息结构 9. Chowdhury Farhan Tanvir。实现耗散自旋动力学数字量子模拟的挑战 10. Chrirou Chaimae。势垒使量子热电材料具有近乎理想的效率
随着 CMOS 技术缩放即将达到基本极限,对具有较低工作电压的节能器件的需求巨大。负电容场效应晶体管 (NCFET) 具有放大栅极电压的能力,成为未来先进工艺节点的有希望的候选者。基于铁电 (FE) HfO 2 的材料具有令人印象深刻的可扩展性和与 CMOS 工艺的兼容性,显示出将其集成到 NCFET 中以实现纳米级高性能晶体管的可行性。由于引入了 NC 效应,基于 HfO 2 的 NCFET 中的短沟道效应 (SCE) 与已经经过广泛研究的传统器件不同 [1]。具体而言,漏极诱导势垒降低 (DIBL) 在决定 SCE 的严重程度方面起着关键作用,在 NCFET 中表现出相反的行为。尽管人们已认识到施加电压对 NCFET 性能的影响 [ 2 ],但栅极电压扫描范围(V GS 范围)对先进短沟道 NC-FinFET 中的 DIBL 的影响仍然缺乏研究。
摘要 — 在本研究中,我们研究了双栅极反馈场效应晶体管 (FBFET) 器件的温度相关行为,该器件在一定温度范围 (300 K 至 400 K) 内表现出陡峭的开关特性。我们使用技术计算机辅助设计 (TCAD) 模拟分析温度特性。FBFET 是在正反馈回路中工作的半导体器件,其中通道区域中的电子和空穴调节势垒和壁的能量状态。FBFET 表现出出色的亚阈值摆幅和高开/关比,这归因于正反馈现象,从而产生理想的开关特性。在模拟结果中,观察到随着温度的升高,导通电流 (I ON )、关断电流 (I OFF ) 和导通电压 (V ON ) 均增加,而开/关电流比降低。此外,通过调节固定栅极电压可以维持高温下的操作。通过模拟结果,我们定性地研究了 FBFET 中各种器件参数随温度变化的变化,并进行了详细讨论。
摘要 单电荷泵是单位安培量子标准的主要候选者,因为它们可以产生精确和量化的电流。为了在精度和操作速度方面达到计量要求,过去十年来,人们一直关注基于半导体的设备。使用各种半导体材料可以测试电荷泵设备的通用性,这是计量学非常理想的证明,GaAs 和 Si 泵处于这些测试的最前沿。在这里,我们展示了可以在尚未探索的半导体中实现泵送,即锗。我们实现了一个单孔泵,其可调势垒量子点在 Ge/SiGe 异质结构界面处静电定义。我们通过使用单个正弦驱动系统(频率高达 100 MHz)来观察量化电流平台。原型的运行受到多个点的意外形成的影响,这可能是由于无序电位和随机电荷波动造成的。我们建议直接改进制造工艺,以在未来的实验中改善泵特性。
摘要 — 评估了 1 µm 间距晶圆对晶圆 (W2W) Cu/SiCN 混合键合界面的电气可靠性。使用控制 IV 方法获取 W2W 混合堆栈的击穿电压分布。假设幂律模型,对使用条件外推可确认使用寿命超过 10 年,当温度低于 175 ◦ C 时,幂律指数高于 10。发现沿 Cu/SiCN 混合键合界面的传导机制为 Poole-Frenkel 发射,能量势垒等于 0.95 eV。仅在温度高于 200 ◦ C 和场高于 1.5 MV/cm 时才能观察到移动铜,证实了该键合界面对铜漂移具有良好的稳定性。索引术语 — 晶圆对晶圆 (W2W) 键合、可靠性、电介质击穿、混合焊盘泄漏。
我们研究了宏观 PL 和 μPL(激发和检测面积 ≤ 5µm 2 )之间的差异。低温微光致发光 (μPL) 用于评估不同长度尺度上高电流密度 InGaAs/AlAs/InP 谐振隧道二极管 (RTD) 结构的结构完整性。薄且高应变的量子阱 (QW) 会受到阱和势垒厚度单层波动的影响,这会导致其能带轮廓发生随机波动。使用常见的光刻掩模减小激光光斑尺寸以达到典型的 RTD 台面尺寸(几平方微米),从而执行 μPL。我们观察到,对于 1μm 2 左右的光斑尺寸,PL 线形在晶圆上的多个点上表现出很大的差异。通过线形拟合研究了 PL 中的这些变化,并根据应变弛豫过程带来的长程无序变化进行了讨论。我们还强调这种 μPL 是一种强大且经济高效的 RTD 结构无损表征方法。