摘要:自组装功能化纳米粒子是多种潜在应用的焦点,特别是用于分子级电子设备。这里,我们对 10 纳米金纳米粒子 (NPs) 进行了自组装实验,这些粒子由一层致密的偶氮苯-联噻吩 (AzBT) 分子功能化,目的是构建具有忆阻特性的光可切换设备。我们制造了由 NP 自组装网络 (NPSAN) 组成的平面纳米设备,这些纳米电极与纳米电极接触,纳米电极之间的电极间隙从 30 到 100 纳米不等。我们展示了这些 AzBT-NPSAN 中光诱导的电导可逆切换,创下了高达 620 的“开/关”电导比记录,平均值约为。 30,85% 的器件的比例超过 10。对纳米颗粒表面化学吸附的分子单层之间的界面结构和动力学进行了分子动力学模拟,并将其与实验结果进行了比较。结果表明,接触界面的性质与分子构象密切相关,对于 AzBT 分子,可以通过明确定义波长的光照射在顺式和反式之间可逆地切换。与通过导电 c-AFM 尖端接触的平面自组装单层上进行的实验相比,分子动力学模拟为实验观察到的两个异构体之间开/关电流比降低提供了微观解释。
由于人类和动物的疾病治疗日常食用而导致的水生环境中药物残留物的抽象积累会导致长期影响。这项研究评估了基于聚合物的吸附剂,1,3-二氨基丙烷修饰的聚(丙烯腈 - 丙烯酸)(DAP-POLY(ACN/AA)),用于吸收多克塞环(DoxycyCycline(dox)(dox)和mefeanamic losic(mefa)的吸附剂。正如FTIR光谱和微分析结果所暗示的,聚(ACN/ AA)共聚物与DAP的化学修饰成功。SEM分析表明,与聚(ACN/AA)共聚物(133 nm)相比,修饰的共聚物具有较大的粒径,为156 nm。研究了吸附剂剂量,接触时间,pH和初始浓度对DOX和MEFA化合物吸附的影响。DIV> DOX和MEFA的动力学研究非常适合伪二级模型,化学吸附是速率控制的步骤。平衡等温线在以下顺序上具有适当性:Langmuir模型> Freundlich模型> Temkin模型。DOX和MEFA的最大吸附能力分别为210.4 mg/g和313.7 mg/g。出色的高吸附能力表明,DAP-修改的聚(ACN/ AA)共聚物是治疗吸附系统中DOX和MEFA轴承废水的潜在吸附剂。关键字:共聚物;强力霉素;等温;动力学药物;甲酸酸;聚(丙烯腈 - 丙烯酸)
摘要 - 使用绿色,安全和环保的腐蚀抑制剂向上趋势,导致对植物提取物进行了许多研究,并将其作为理想的替代候选者。在这里,在低温(313K)上快速制备无花果叶提取物(FLE),以保留主要的化学成分和蒸馏水作为提取的溶剂。使用这种制备的抑制剂的抑制性,吸附和作用机制,采用这种绿色抑制剂来防止钢腐蚀,并使用电静脉极化,电化学启发镜和重力测量来评估该制备抑制剂的抑制作用,吸附和作用机制。热力学分析和吸附等温线也已应用于阐明吸附机制。获得的结果表明,FLE是一种混合类型,遵循Langmuir等温线,其抑制效率最高达到94%。通过分析腐蚀过程激活参数证实了抑制剂化学吸附的抑制剂膜的形成,并且随着温度的升高,抑制效率的提高也可以提高。这些发现通过FTIR和FTIR第二个衍生光谱验证。使用SEM技术和XRD分析研究了钢表面形态。 通过无花果叶提取物对酸钢产生了令人满意的腐蚀抑制作用,这符合使用环保,无毒的产物的渴望。使用SEM技术和XRD分析研究了钢表面形态。通过无花果叶提取物对酸钢产生了令人满意的腐蚀抑制作用,这符合使用环保,无毒的产物的渴望。
提出的工作描述了一个简单的无标签电化学免疫传感器,用于测定四环素(TC)。传感器的功能是基于在金电极表面自组装的抗体终止的硫醇层的电绞件,用作介电膜。电绞件的强度与通过其特异性抗体捕获的TC量相关,并以电容势力曲线的形式遵循。使用电化学阻抗光谱(EIS)优化了免疫传感器结构的过程。优化了硫醇的化学吸附时间,TCAB固定的持续时间及其浓度。发达的免疫传感器在两个浓度范围内表现出线性响应:从0.95到10 l mol L –1,从10到140 l mol L –1,平均敏感性为6.27 nf L mol 1 L(88.67 nf l l cm 1 L CM 2)和0.56 Nf L mol 1 L(0.56 Nf L mol 1 L(7.84 nf Lol Mol 1 l Mol 1 L Mol 1 L Mol 1 L Mol 1 L Mol 1 L c)。检测限为28 nmol l 1。研究了所提出的传感器针对其他抗生素,阿莫西林和西帕曲霉蛋白的特定凹槽。免疫传感器已成功用来以片剂形式和河水基质量化TC。2019年作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
摘要:通过橙(柑橘Sinensis)种子提取物抑制铝在2 M盐酸溶液中腐蚀的抑制作用,已经通过体重减轻,温度和氢进化方法研究了。从减肥测量结果中获得的结果表明,西梭菌表现出良好的腐蚀抑制作用,因为它大大降低了盐酸溶液中铝的腐蚀速率,在30°C下,在5 g/L提取物浓度下达到了82.69%的最高抑制效率。随着温度从30°C增加到40°C,抑制效率的提高。通过温度测定方法对数据进行分析表明,在提取物相对于空白的情况下,反应数量降低。在5 g/L提取物浓度下,获得的最高抑制效率为69.9%。与空白相比,在提取物存在下,在腐蚀过程中从腐蚀过程中进化而来的氢气体积急剧减少。该方法记录的最高抑制效率在30°C下为5 g/L提取物浓度为89.80%。sinensis种子提取物的腐蚀抑制特性可以归因于植物化学物质的存在,植物化学物质吸附在金属表面上,并通过侵袭性离子阻止其攻击。化学吸附过程,用于吸附丝酵母提取物上铝表面。在铝表面上吸附在铝表面上,遵守兰木尔的吸附等温线。
分析了使用静态波纹模型在热扭曲的Cu(111)表面上进行H 2解离化学吸附的最新的6D量子动力学模拟,分析了静态波纹模型,以产生多种(实验可用的)可观察结果。在几个不同的网格上使用波袋以及两种不同的分析方法,在实验表明慢速反应通道占主导地位的区域中,使用波袋以及两种不同的分析方法来定量预期误差,尤其是对较低反应概率的重要误差。显示出不同热扭曲的表面板的最低反应屏障位点不仅在能量上是在能量上,而且在几何学上是在表面构型之间不同的,这些反应板在表面构型之间也有所不同,这些反应表面构型在包括表面温度效应时可用于解释几种动态效应。直接组合模拟的飞行时间光谱与从最先进的解吸实验获得的光谱与完美的晶格老板方法相比,一致性大大改善。与实验旋转和振动效率的一致性一致,当在理论模型中包括热激发表面时,也有所提高。最后,我们介绍了针对较低旋转激发态的旋转四极比对参数中明显的量子效应,这强调了该系统的仔细量子动力学分析的重要性。
摘要:随着药物晶体表面积的增加可改善溶解动力学和有效的溶解度,纳米化药物晶体已成为一种成功的口服生物利用度的方法。最近,通过利用聚合物和表面活性剂赋形剂在结晶过程中,开发了自下而上的方法来直接组装纳米晶体,以控制晶体尺寸,形态和结构。然而,尽管重大研究研究了聚合物和其他单一添加剂如何抑制或促进药物系统中的结晶,但很少有工作研究多种赋形剂在药物晶体结构和结晶度的程度上的机械相互作用,从而影响配方性能。这项研究探讨了模型疏水药物晶体的结构和结晶度如何由于竞争性非离子表面活性剂(Polysorbate 80和sorbitan monooleate)和表面活性聚合物(甲基纤维素)之间的竞争性界面化学吸附而变化。经典分子动力学模拟突出了关键分子间相互作用,包括表面活性剂 - 聚合物络合和晶体表面表面活性剂筛选,修改所得的晶体结构。并行,在水凝胶薄膜中产生药物纳米晶体的实验证明了药物结晶度随着表面活性剂的重量分数的增加而增加。仿真结果揭示了整体晶体中的加速动力学与实验测量的结晶度之间的联系。关键字:纳米制剂,分子动力学,界面,聚合物,表面活性剂,结晶度据我们所知,这些是第一个模拟,该模拟直接表征了赋形剂表面组成的结果,并将结晶度的实验范围与分子晶体的结构变化联系起来。我们的方法提供了对纳米结晶中结晶度的机械理解,可以扩大口服可兑换的小分子疗法的范围。
摘要 本研究旨在调查过期的异丙嗪-茶酸盐在硫酸环境中作为低碳钢腐蚀抑制剂的有效性。使用红外光谱和气相色谱法对该药物的功能基团和化学成分进行了表征。还采用了实验技术和重量分析法。评估了该药物的抑制效果(热力学和吸附参数)。使用 RSM 和 ANN 模型优化和建模了抑制效率。发现主要的功能基团是 OH、CO-NH-CO 伸展;=C- H 伸展;NH 变形,并含有 2,4-二叔丁基苯酚、1-十七烯、十三烷、11-十八烯酸丙酯等。不同抑制剂浓度下的吸附热 (Q ads ) 结果均为负值,异丙嗪-茶酸盐浓度为 0.8 g/L 时其值为 -67151.6 J/mol。 Frumkin 等温线是等温拟合中拟合效果最好的,因为它的平均 R 2 最高。313 K 和 323 K 下的 Gibb 吸附自由能值分别为 -10.23 kJ/mol 和 -10.29 kJ/mol,表明异丙嗪-茶碱分子的吸附是物理吸附而非化学吸附。重量法可获得 92.89% 的最大效率。ANN 对抑制效率的预测更好,R 2 值更高 (0.9999),RMSE 值更低 (0.0180) 和 SEP 值更低 (0.0230)。RSM 优化得到的最佳效率为 92.39%。阻抗法显示电容环路,表示电荷转移过程,极化测量表明该药物为混合型抑制剂。因此,异丙嗪-茶酸盐被证明是一种控制 H 2 SO 4 介质中低碳钢腐蚀的极佳抑制剂。关键词:腐蚀控制、低碳钢、硫酸、过期药物、抑制剂
氢是由于其高能量密度和零碳排放而导致可再生能源存储和运输的有前途的候选者。其实际应用面临与安全,有效的存储和释放系统有关的挑战。本评论文章研究了用于氢储存的高级纳米结构材料,包括金属乙酰基和氰化物配合物,B,N掺杂的γ-graphyne纳米管(γ-GNT),磷化锂双螺旋和NI-Formated Concobon-Cobon-Coarbon基簇。密度功能理论(DFT)计算用于分析结合能,热力学稳定性和吸附机制。ni装饰的C 12 N 12纳米群体表现出增强的储存能力,具有良好的N-(μ-Ni)-n构造的最高八个H 2分子结合。磷化锂双螺旋在一个稳定的半导体框架内显示出9.6 wt%氢气的潜力。在硼掺杂位点使用OLI 2的γ -GNT的功能显着提高了存储潜力,从而实现了实用应用的最佳氢结合能。此外,通过贵重气体插入稳定的金属乙酰基和氰化物配合物显示热力学上有利的氢吸附。这些结果突出了这些功能化纳米结构的潜力,可以实现高容量,可逆的氢存储。γ-GNT提供高表面积和可调电子特性,非常适合通过杂原子掺杂增强物理吸附。磷化锂双螺旋促进了通过不饱和锂中心的库巴斯样化学吸附。这些材料代表这项研究中的纳米结构,例如γ-图纳米管(γ-GNT),磷化锂双螺旋,金属乙酰基和氰化物络合物以及基于NI染色的碳基簇,是基于其具有互补氢充气机制的能力,包括物理学和化学能力。金属乙酰基和氰化物配合物通过电荷转移和共轭框架稳定氢吸附,而NI装饰的簇结合了极化诱导的物理吸附。
未转化的反应物。在此步骤中,氢气可从混合物中分离出来,并在反应中重新使用。在未来以氢气为主要能源载体的情况下,分离和/或纯化能量昂贵的氢气将变得更加重要。[1–3] 一种有前途的方法是使用由吸氢金属(如钯和钯合金)制成的氢选择性膜。[4,5] 此类膜的渗透性取决于两侧的表面性质(解离/复合)和本体渗透性(扩散和溶解度)。[4] 人们已经进行了大量研究,以寻找比钯具有更高渗透性的廉价材料(例如钒、铌、钽及其合金[6–10]),然而,昂贵的钯和钯基合金由于其良好的表面性质仍然是优越的膜材料。 [5,11] 如果可以修改诸如钒基合金等廉价材料的表面性质以匹配钯的性质,它们将彻底改变该技术。尽管这个目标相当简单,但是对于这些理想的表面性质仍然存在知识缺口。大多数著作引用了表面科学的概念,描述了氢的物理吸附、解离(屏障)和化学吸附。[12] 但是,需要额外的步骤 - 跳跃到亚表面位点和相邻的本体位点 - 才能充分模拟渗透过程。尽管如此,由于步骤之间的复杂相互作用,建模的预测能力有限 [4,6,13],更重要的是 - 由于缺乏原位氢分析,只能通过与非常基础的实验(渗透动力学,例如参考文献 [14])进行比较才能进行实验验证。Baldi 等人已经证明了电子能量损失谱可以作为纳米颗粒中本体氢的分析方法。 [15] 在本文中,我们进一步开发了通过反射电子能量损失谱 (REELS) 原位探测氢化物薄膜表面氢含量的方法。该方法应用于实验方法,其中可以有意改变膜的表面性质并在操作条件下确定其氢含量。我们通过直接观察 Pd/V 复合膜中渗透对氢含量的依赖性证明了限速步骤的存在。建模得出了各个层的相关性,从而可以将结果与从氢吸收中获得的结果联系起来