PLOWSHARE 计划说明:有关索赔的信息,请致电退伍军人事务部 (VA) 800-827-1000 或司法部 (DOJ) 800-729-7327。有关所有其他信息,请致电核试验人员审查 (NTPR) 计划帮助热线 800-462-3683。美国原子能委员会 (AEC) 于 1957 年 6 月在劳伦斯辐射实验室 (LRL) 的技术指导下建立了 PLOWSHARE 计划。该计划包括 1961 年至 1973 年间在内华达试验场 (NTS) 和科罗拉多州和新墨西哥州的其他地点进行的 27 次核爆炸。附表中第一张表格中列出的核试验都是地下进行的,无论是竖井试验还是弹坑试验,当量不超过 200 千吨。 PLOWSHARE 爆炸旨在评估核爆炸的非军事应用。设想的主要潜在用途是大规模地理工程,如运河、港口和水坝建设;油气井增产;以及采矿。考虑到 PLOWSHARE 的和平目标,AEC 从圣经中取了该计划的名称:“他们要把刀打成犁头”(以赛亚书 2:4)。历史背景项目 GNOME 和 SEDAN 是 PLOWSHARE 计划的前两次爆炸,之所以被选中进行讨论,是因为它们是在美国大气层核试验期间进行的,有记录(尽管有限)国防部 (DOD) 参与,并且有足够的文件来讨论爆炸和相关活动。国防部在 PLOWSHARE 期间没有进行军事演习,对发射的参与也有限。军方的主要作用是提供后勤支持;允许技术参与,只要它不干扰 AEC 活动。 GNOME 项目是一次竖井爆炸,于 1961 年 12 月 10 日中午在新墨西哥州卡尔斯巴德东南 40 公里处发射。附图中的第一张显示了爆炸地点的位置。该装置埋在 1,184 英尺深的岩盐层中,位于一条 1,116 英尺长的钩形自封隧道的尽头。一个深 1,216 英尺、直径 10 英尺的竖井通向与隧道相连的站房。爆炸当量为 3 千吨,在地下形成了一个高 60 至 80 英尺、直径 160 至 170 英尺的圆顶室。尽管 GNOME 计划是一次封闭式爆炸,但它还是向大气中排放了。爆炸发生 2 至 3 分钟后,竖井顶部开始出现一团蒸汽云。爆炸后约 7 分钟,灰色烟雾和蒸汽以及相关放射性物质从竖井口冒出。放射性物质排放到距爆炸中心西南约 340 米的大气中。现场测量的最高伽马射线强度为每小时 1 伦琴 (R/h)。该强度记录为 1,爆炸当天 19:38 时,位于井口西北 300 米处。最高场外读数为 1.4 R/h,爆炸一小时后,位于 128 号公路控制点以西 5.5 公里处。地下回收作业被推迟,部分原因是井口处的辐射水平较高(例如,爆炸后第二天上午 9:08 时为 5 R/h)。爆炸六天后,初步放射性
ARENA - 澳大利亚可再生能源机构 AS - 澳大利亚标准 ASME - 美国机械工程师学会 ASTM - 澳大利亚材料与试验协会 BatMn - Calix 的电煅烧炉之一 BF - 高炉 BoD - 设计基础 BOF - 碱性氧气转炉 BoM - 物料清单 煅烧炉 - 发生目标反应的工艺容器。 CAPEX - 资本支出 CFC - 杯状闪速煅烧炉 CGA - 压缩气体协会 COD - 化学需氧量 DCS - 分布式控制系统 DM - 脱盐(水) DRI - 直接还原铁 EAF - 电弧炉 EIS - 环境影响报告 EPCM - 工程、采购和施工管理 EPL - 环境保护许可证 ESD - 紧急关闭 FAT - 工厂验收测试 FEED - 前端工程设计 FEL - 前端装载机 FID - 最终投资决策 FOAK - 首创 GA - 总体布置 Gt - 千兆吨 HA - 氢侵蚀 HAZOP - 危害和可操作性评审 HBI - 热压铁块 H-DRI - 直接氢还原铁 HE - 氢脆 HMI - 人机界面 I/O - 输入/输出 IEA - 国际能源署 IFC - 国际消防规范 ISA -国际自动化学会 IEC - 国际电工委员会 IECEx - 国际电工委员会爆炸性环境用设备标准认证体系 ktpa - 千吨/年
《2016 年萨摩亚能源评论》由财政部下属的能源政策协调与管理司编制,旨在帮助萨摩亚政府、商界和公众更好地了解能源数据趋势、里程碑和关系。每年的能源评论都包含一年的新数据(本例中为 2016 年),这些数据通常是初步数据,可能会在后续发布中发生变化,并且随着获得更好的信息,会对前几年的数据进行修订。虽然本报告的主要目的是记录萨摩亚的能源历史并就过去能源供需问题提供观点,但这些数据也用于监测和评估萨摩亚的能源目标和指标,以利于新的《2017-2022 年萨摩亚能源部门计划》。2016 年,萨摩亚的能源总产量估计为 129.4 千吨油当量。在总能源产量中,27.3% 来自生物质,69.2% 来自石油产品,其余 3.2% 来自水电、太阳能、风能和其他小型可再生能源。2015 年,新可再生能源占总能源产量的 1.4%,与 2014 年类似。萨摩亚能源审查报告的早期版本可在萨摩亚财政部网站上查阅 - http://www.mof.gov.ws/Services/Energy/EnergyReviews/tabid/5762/Default.aspx
2024年第四季度的销售额下降了1.5%,至14.71亿欧元,而2024年第三季度为14.93亿欧元。货物从2024年第三季度的61.7千吨减少到2024年第四季度的5万吨,这是由于可回收和可再生能源细分市场的销量较低,尽管季节性货运较高。调整后的EBITDA在本季度增加到1.16亿欧元(不包括200万欧元的特殊收益),比9,900万欧元(不包括800万欧元的非凡收益)。主要驱动因素是积极的组合,较低的购买价格和积极的估值效应,使较低的数量和较低的价格过度。2024年第四季度的折旧和摊销费用为欧元(54)亿欧元,包括损失欧元(1)百万。Aperam的营业收入在2024欧元中的第四季度的营业收入为6400万欧元,而上一季度的营业收入为4,900万欧元。筹资成本,包括2024年第四季度的FX和衍生品的净成本为欧元(6)百万。本季度的现金成本为1300万欧元。2024年第四季度的所得税费用为欧元(4600万欧元)(包括(16)百万欧元(16000万欧元),延迟税收资产的净纳税资产已被证明是在携带的税收损失和其他税收福利所承认的)。Aperam记录的净结果是2024年第四季度的利润为1200万欧元,而2024年第三季度的利润为1.79亿欧元。
S-6. 马铃薯产量预计变化,以马里兰州为单位,% .............................................................. xxx 1-1. 每个水盆地的可用、战略和国家水储量,百万立方米 .............................................. 3 1-2. 1995-2017 年期间的主要宏观经济指标 ............................................................. 7 1-3. 2000-2017 年亚美尼亚 GDP 结构,% ............................................................................. 8 1-4. 2008-2017 年主要社会指标 ............................................................................................. 8 1-5. 2008-2017 年亚美尼亚就业和失业性别均等指数 ............................................. 9 1-6. 2017 年工业部门女性和男性就业情况 ............................................................. 13 1-7 ․ 1990-2017 年货物和客运量 .......................................................................................... 14 1-8. 交通工具发动机燃料消耗量 .............................................................................................. 14 1-9. 农业用地,千公顷 ...................................................................................................... 15 1-10. 牲畜和家禽数量,千头(截至 1 月 1 日) ............................................................. 16 1-11. 亚美尼亚主要农业产出类型,千吨 ............................................................................. 16 2-1. GWP 值 ............................................................................................................................. 27 2-2. 2015 年和 2016 年各部门和气体温室气体排放量,Gg ............................................................. 29 2-3. 1990 年至 2016 年各部门温室气体排放量,Gg CO 2 当量 ............................................................. 31 2-4. 方法 1 分析(水平评估),2016 年 ............................................................................. 42 2-5.主要来源温室气体排放不确定性评估 ...................................................................................... 43 4-1. 能源部门的减缓潜力,Gg СО 2 当量 .............................................................................. 63 4-2. 2030 年温室气体减排潜力 ............................................................................................. 64 4-3. “采取减缓措施”下的能源消耗指标预测
2W/3W 两轮或三轮车 ACC 先进电池化学 AI 人工智能 Al2O3 氧化铝 BESS 电池储能系统 BEV 电池电动汽车 BMS 电池管理软件 CAES 压缩空气储能 CAGR 复合年增长率 CCl4 四氯化碳 CERT 能源研究与技术委员会 CES 化学储能 CO2 二氧化碳 CSIR 科学与工业研究理事会 CSIRO 联邦科学与工业研究组织 D&D 开发与演示 DNi 直接镍工艺 DT 数字孪生 EC 电化学 EcES 电化学储能系统 EC 电化学元件 EES 电储能系统 EHS 环境与健康安全 ES 储能 ESS 储能系统 ETIP 欧洲技术与创新计划 ETWG 能源转型工作组 EU 欧盟 EV 电动汽车 FCAS 频率控制辅助服务 FES 飞轮储能 GES 重力储能 GHG 温室气体 GW 吉瓦 GWh 吉瓦时 HDV 重型车辆 HTP 人体毒性潜力 ICE 内燃机 IEA 国际能源署 IP 知识产权 IRENA 国际可再生能源机构kT 千吨 kWh 千瓦时 LCO 钴酸锂 LCOS 平准化储能成本 LDV 轻型汽车 LFP 磷酸铁锂 Li 锂金属 Li 离子 锂离子 Li-O2 锂金属空气 Li-S 锂硫
●土壤碳固化是捕获并存储在土壤中的大气二氧化碳的过程,形成了自然全球碳循环的一部分。●在不受干扰的天然生态系统中,碳可以存储在土壤中数千年。然而,自然土地向农田的转化使土壤有机碳库存枯竭,并将这种存储的碳释放到大气中。●牲畜放牧系统负责在过去的六十年中损失大量土壤碳。●再生放牧 - 涉及在短时间内在陆地上旋转牲畜 - 已提议作为改善土壤碳储备和抵消牲畜养殖排放的解决方案。●最近的估计表明,改善放牧管理可能会在植被和土壤中占据约63千吨(十亿吨)的碳。●但是,一旦考虑了放牧动物的甲烷和氧化氧化物的排放,估计需要135吉甘吨的碳吸收物来抵消这些排放。●依靠土壤碳固执来抵消放牧系统的排放,因为碳存储是有限的和可逆的,并且甲烷和一氧化二氮的排放量增加可能会抵消土壤中碳固相机的任何收益。再生放牧的影响也高度依赖于上下文。●尽管有不确定性,但在世界某些地区,土壤中的碳中的碳可能导致中期降低气候变化。●旨在维持或改善土壤碳的管理实践还提供其他好处,例如改善土壤健康,侵蚀控制和减少排放强度,产量和农民的收入有积极的结果。
可再生能源 (RE) 近年来因大型光伏 (PV) 和风能项目的成功生态、经济和社会成果而受到普遍关注。混合可再生能源系统 (HRES) 是可再生能源框架的一个杰出例子。尽管如此,由于涉及多种因素,设计 HRES 相对具有挑战性。因此,优化和敏感性分析对于提供最低的平准化能源成本 (LCOE) 至关重要。HOMER® 软件最近被广泛使用,提供了多种优势,包括积极提供生态友好且有利可图的 HRES。虽然文献涵盖了全球 HRES 的广泛探索,但对约旦 HRES 的研究相对较少。这项工作利用 HOMER® 在卡拉克设计了一个有利可图的 HRES。进行的 HOMER® 模拟显示,最具成本效益的 HRES 包括光伏模块、柴油发电机、锂离子电池和电源转换器,提供的平准化能源成本为 488 美元/兆瓦时,碳排放量为 610.73 千吨/年。同时,包含光伏组件、风力涡轮机、柴油发电机、锂离子电池和电源转换器的 HRES 具有更高的 LCOE(0.489 美元/千瓦时)。包含风力涡轮机、柴油发电机、锂离子电池和电源转换器的 HRES 导致更高的 LCOE(0.586 美元/千瓦时)。仅包含柴油发电机的系统 LCOE 为 0.727 美元/千瓦时。建议升级 RE 采用以提供清洁且有利可图的电力。此外,建议利用储能来最大限度地提高 HRES 的成本效益。
(Shri G. Kishan Reddy)(a)和(b):煤矿开采没有明显的温室气(GHG)贡献,其中包括甲烷。根据为煤炭印度有限公司(2020-21)准备的“碳足迹分析和路线图”的报告,煤矿开采在该国总体温室气体发射中的贡献约为1%。具有高葡萄干潜力的地下地雷很少,因此,这些矿山的发射将是微不足道的。根据报告,总碳排放量估计为每吨煤生产45.95千克二氧化碳。,其中约35%的排放归因于逃犯 /甲烷排放。因此,估计的甲烷排放量可以视为每吨煤生产16.08千克二氧化碳,相当于16.08千吨二氧化碳的煤炭生产。然而,尚未维持有关该国的甲烷排放量的特定数据,该数据尚未维持该国的煤矿开采活动。(c):《煤矿法规》,2017年,其中纳入了从工作煤矿或废弃煤矿中提取甲烷的法规。此外,政府石油和天然气部(MOPNG)。已发布了1997年5月8日的CBM政策的部分修改,日期为2018年5月8日,该通知概述了授予煤层甲烷(CBM)授予煤炭床甲烷(CBM)的勘探和剥削权的合并条款和条件,向印度煤炭有限公司(CIL)及其子公司及其在其煤炭租赁的煤矿租赁区域提供煤矿开采的煤矿区域。(d):由于甲烷是一种有效的温室气体,煤矿开采的危害,捕获和利用煤层甲烷(CBM)不仅可以使未来的采矿安全,而且还会玩
摘要 汽车电气化是实现交通运输领域低碳转型的关键催化剂,而电池报废处理主要是为了促进材料回收,在减少温室气体排放方面具有显著的附带效益。本研究评估了电池生产全生命周期的温室气体排放,并研究了二次使用、再生和回收三种电池报废处理策略的影响,并进一步提出了中国电动汽车电池生产温室气体排放的预期情景。结果表明,在一切如常(BAU)情景下,温室气体排放量在2030年达到峰值3600万吨,其中磷酸铁锂电池为1800万吨,镍钴锰电池为1800万吨;到2060年降至1100万吨,其中磷酸铁锂电池为400万吨,镍钴锰电池为700万吨。随着收集率的提高和不同策略应用比例的变化,温室气体排放具有更大的减排潜力。在收集率提高的情景下,与 BAU 相比,2060 年的温室气体排放量将减少 21%。在优先再生的情景下,2060 年的温室气体排放量可减少 32%,其中 64% 的锂资源由再生电池提供。在优先二次利用的情景下,2060 年的温室气体排放量可减少 104%,这涉及替换 27 千吨锂投入并减轻与储能系统相关的 1300 万吨温室气体排放。鉴于这些发现,我们提倡制定政策建议,旨在促进 EoL 电池处理技术的进步并加快电池制造工艺向碳中和的转变。