通过基因组挖掘和合成生物学对新型代谢机制的分析和重建,以及通过结构修饰,修饰和优化的新结构的小分子药物的开发可以为突破分子靶向药物的开发而破坏瓶颈。靶向具有重要活性,独特结构或/和广泛临床应用的天然药物分子家族,揭示体内生物转化并分析分子机制可以进一步促进天然产物的发展。近年来,一些技术和科学发展,包括改进分析工具,基因组挖掘和工程策略以及微生物文化的进步,为自然产品相关研究注入了新的机会。在这里,我们旨在汇编创新的原始研究和审查文章,以阐明代谢转换,潜在靶标,天然产物的分子机制及其与人类代谢的关联。
高维纠缠的光状态为量子信息提供了新的可能性,从量子力学的基本测试到增强的计算和通信效果。在这种情况下,自由度的频率将鲁棒性的资产结合在一起,并通过标准的电信组件轻松处理。在这里,我们使用集成的半导体芯片来设计直接在生成阶段的频率键入光子对的波函数和交换统计,而无需操作后。量身定制泵束的空间特性,可以产生频率与年轻相关,相关和分离状态,并控制光谱波函数的对称性,以诱导骨气或费米子行为。这些结果是在室温和电信波长下获得的,开放有希望的观点,用于在整体平台上使用光子和光子的量子模拟,以及利用反对称高度高维量子状态的通信和计算方案。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要 - 本文调查了电线的使用 - 将接触电阻作为诊断电力电子模块的健康状况的指标。该技术特别致力于监测当模块用开尔文点连接时,在模块连接时,顶部互连(金属化线键)的降解。该指标的一个优点是,可以在线遵循,而不会被当前或电压打扰,以诊断健康状况,并可能通过将功率模块的剩余寿命的预后与终身模型相关联。为此目的,基于在不同条件下的动力循环测试,该指标与常用的指标(即收集器发射器电压VCE表明,第一个对降解更敏感,更易于在线使用,最后应该更适合终身预后。
计算框架和理论建模的最新进展已显着改善了对高运动材料的搜索。高吞吐量虚拟筛选(HTVS),该过程使用理论技术分析了大型分子库,并将其范围缩小到一小部分有希望的候选者进行实验验证,现在可以评估广泛的化学库的评估。20–25这种方法提高了识别新型高动力半导体的概率,并提供了对电荷运输的基本物理学的见解。26–29此外,HTVS的一个显着副作用是生成广泛的数据库,该数据库包含这些分子的计算物理特性,这些数据库促进了机器学习(ML)技术的应用(ML)技术,以预测和优化新分子系统的正常功能。30,31作为HTVS研究的例子,Schober等。29设计了一种筛选方法,通过分析来自大分子晶体数据库的电子耦合和重组能来鉴定具有高载体迁移率的有机半导体。他们的方法发现了已知和新颖的有前途的材料。在另一项研究中,Nematiaram等。27利用瞬态定位理论32,33筛选剑桥结构数据库(CSD)34识别几种高动力材料并对影响移动性的关键参数进行排名。值得注意的是,他们强调了电荷转运两维的重要性(2D),也称为带动型,其中电荷转运主要发生在二维平面内。将ML模型与HTV集成虽然早期的研究表明各向同性带对电荷运输的潜在影响,但13,18,32,35参考。27是第一个通过对现有结构进行的大规模计算在统计上验证这一观察结果的人。尽管在HTVS方法方面取得了重大进步,但对于大量结构而言,物理属性(例如2D)的计算仍然是一项计算要求的任务。此限制在化学空间的有效探索中提出了一个主要的瓶颈,尤其是随着可用化学数据库的多样性和复杂性继续扩展。因此,迫切需要开发更多有效的算法和方法,这些算法和方法可以加速这些构成过程。
图7:实验设置。为了改变温度,我们将使用含有液氮或氦气的血管。在容器中,由于传热机制,温度梯度沿垂直方向形成(图7)。温度t(x)取决于距氦表面的距离x。确切的温度曲线由几个因素确定,包括氦气量,容器的几何形状及其绝缘特性。样品(Cu,ta uds si)安装在由COP-PEN制成的样品支架(Probenhalter)上,该样品拧到杆上(Tauchrohr)并被圆柱形屏蔽(Schutzrohr)覆盖(图9)。另外,将铂和碳电阻添加到样品持有器中,该量将用于测量温度。
汽车对设备在高应力和恶劣工作条件下运行的要求越来越严格。在这种情况下,钝化层在确定电气性能和可靠性方面起着根本性的作用。本研究重点关注应用于最先进功率器件的一次和二次钝化层及其对可靠性的影响。使用标准模块封装中组装的功率二极管作为测试载体,并进行高压温度湿度偏置测试以对结构施加应力。完整的故障模式分析突出了钝化层退化背后的现象。通过应用特定的无机和有机层组合来评估不同的钝化方案。最后,总结了典型的退化机制和相互作用。
半导体压电纳米线 (NW) 是开发由生物相容性和非关键材料制成的高效机械能传感器的有希望的候选材料。人们对机械能收集的兴趣日益浓厚,因此研究半导体 NW 中的压电性、自由载流子屏蔽和耗尽之间的竞争至关重要。到目前为止,由于表征这些纳米结构中的直接压电效应所带来的实验挑战,这一主题很少得到研究。在这里,我们使用 DataCube 模式下的 PFM 技术并通过逆压电效应测量有效压电系数来摆脱这些限制。我们证明了垂直排列的 ZnO NW 的有效压电系数随着半径的减小而急剧增加。我们还提出了一个数值模型,通过考虑掺杂剂和表面陷阱来定量解释这种行为。这些结果对基于垂直排列的半导体 NW 的机械能传感器的表征和优化有很大影响。