Ti 2 Fex(X = SI,GE和SN)的结构,机械,电子和晶格动力学性质已通过基于密度功能理论的第一原理计算探索。已经计算出这些Al Loys的平衡晶格常数,散装模量,电子带结构和磁矩值与先前的研究一致。计算了几个机械参数,例如弹性常数C IJ,Bulk Modulus B,Young Modulus E,剪切模量G和Poisson的比率υ,并基于这些计算,检查了机械稳定性。总磁矩的计算值与现有的理论数据密切一致,并符合Slater-Pauling规则。从其计算出的电子带结构Ti 2 Fesi,Ti 2 Fege和Ti 2 Fesn中被发现为平衡晶格常数的半金属合金,少数旋转能量间隙分别为0.820、0.850,0.850和0.780 eV。通过直接方法进行了完整的声子光谱及其这些合金状态的总密度和部分密度。计算出的声子频谱指出了这些合金的动态稳定度。此外,使用GIBBS2代码在Debye模型中研究了热力学特性,例如热容量,热膨胀,熵和Grüneisen参数,该代码具有从0到1500 k的一系列温度。
摘要:混合半导体 - 超导体纳米线构成了一个普遍存在的平台,用于研究栅极可调的超导性和拓扑行为的出现。其低维和晶体结构柔韧性有助于独特的异质结构生长和有效的材料优化,这是准确构建复杂的多组分量子材料的关键先决条件。在这里,我们对INSB,INASSB和INAS纳米线上的SN生长进行了广泛的研究,并演示了纳米线的晶体结构如何驱动半金属α -SN或超导β -SN的形成。对于INAS纳米线,我们观察到相纯超导β-SN壳。但是,对于INSB和INASSB纳米线,初始外延α -SN相变成共存α和β相的多晶壳,其中β /α的体积比随SN壳厚度而增加。这些纳米线是否表现出超导性,不批判性地依赖于β -SN含量。因此,这项工作为SN阶段提供了各种半导体的关键见解,这对适合生成拓扑系统的超导杂种产量产生了影响。关键字:纳米线,拓扑材料,半导体 - 螺旋体混合动力,SN,量子计算,界面,外交T
• 聚合物:包括气体分离、反渗透、纳滤、超滤、微滤、渗透汽化等具有特定功能的聚合物膜。 • 先进纳米结构材料:包括碳及其他复合材料、碳管等。 • 合成纤维面料和可穿戴技术:设计和制造具有技术功能、保暖或防水性能以及其他功能的智能面料。 • 高附加值金属和材料:具有特定性能的金属和其他物质,包括高电阻、高导电性等,常用于太空、地下勘探等极端环境。例如,其中包括:陶瓷、金属陶瓷、立方氮化硼、金刚石等刀具材料。 • 生物材料:为用于医学或生物功能而创造的生物或合成物质。 • 可持续技术的量子材料:具有非平凡拓扑电子态及其磁相的二维 (2D) 材料、拓扑绝缘体和半金属、超导体。探索复杂的相互作用、电子相关性以及量子自旋在可持续技术中的应用,例如低功耗电子学、自旋电子学、高效照明、太阳能利用和先进的传感器设备。 • 其他创新材料:包括用于储能复合材料、聚合物等的先进材料。航空航天、智能移动和无人系统该技术领域专注于新型交通方式、移动性和空间技术,包括自动驾驶、无人机和无人系统方面的创新,以及传感器、传感、数据处理和电信领域的系统:
铋是一种新兴的量子材料,具有令人着迷的物理特性,例如半金属-半导体 (SM-SC) 跃迁 1-8 和拓扑绝缘态。9-12 分子束外延 (MBE) 生长技术的发展已经生产出高质量的 Bi 薄膜,其中过去五十年理论上预测的丰富物理特性可以通过实验实现。例子包括但不限于卓越的表面态自旋和谷特性、2,13 超导性、14 瞬态高对称相变 15 和非谐散射。16,17 此外,介电常数的负实部和较小的虚部的结合,以及强的带间跃迁,使其在带间等离子体中应用前景广阔。 18 尽管如此,单晶 Bi 纳米薄膜在实际器件中的应用仍然受到限制,因为它们只能在晶格匹配的衬底上生长,例如硅 (111)、19 BaF 2 (111)、20 和云母。21 最近,Walker 等人介绍了一种双悬臂梁断裂 8,22 和热释放胶带 23 技术,用于将大面积 MBE Bi 纳米薄膜从 Si (111) 干转移到任意衬底;他们还表明,转移薄膜的电学/光学/结构特性与原生薄膜相当。8,23 该技术可以研究 Bi 在任意衬底上的独特电子、声子和自旋电子特性,例如用于新兴器件的透明、柔性、磁性或拓扑绝缘衬底。大多数
引言。目前,人们对拓扑非平凡系统中的凝聚态物理学有着浓厚的兴趣。在过去的二十年里,人们做出了巨大的努力来寻找新型拓扑量子物质,如拓扑绝缘体[1,2]、拓扑半金属[3]或拓扑超导体[4]。拓扑相通常与两个能带相交的能带结构中的孤立奇点有关[5,6]。在拓扑超导体的情况下,零能量的Bogoliubov准粒子(称为Majorana零模式)可用于拓扑保护的量子计算[4]。此类系统中零能量模式的存在受到拓扑保护[7],最近已在超导三端结实验中得到证实[8]。实际上,超导弱链接中的安德烈夫束缚态 (ABS)(也称为约瑟夫森结)也被提议用于实现量子比特 [9,10]。如果将结嵌入射频超导量子干涉装置 (SQUID),则可以轻松调整 ABS,并且可以通过微波 [11 – 14]、隧穿 [15] 和超电流谱 [16] 进行实验访问和相干操控。最近,据预测,由传统超导体制成的多端约瑟夫森结 (MJJ) 将表现出四 [17 – 22] 和三 [23 – 27] 引线的非平凡拓扑。在这样的系统中,不需要奇异的拓扑材料,尽管多端拓扑纳米线也已被讨论过 [27]。在 MJJ 中,两个终端之间的量化跨导是整数值陈数的表现形式 [17,20,21,27]。或者,弗洛凯在周期驱动的约瑟夫森系统中陈述,其连通性比
二维材料的合成需要较高的工艺温度才能获得较高的材料质量,这阻碍了在器件晶圆上直接合成。因此,制造需要将二维材料从专用的生长衬底转移到器件晶圆上。本论文介绍了一种通过晶圆键合转移二维材料的通用方法。该方法的目标是在半导体代工厂的生产线后端集成到电子电路上。该方法的变体是悬挂二维材料的自由悬挂膜,并将层堆叠成二维材料异质结构。二维材料的图案化是器件制造的基本步骤。然而,标准的光刻方法会导致保护性抗蚀剂残留,从而降低器件性能。本论文介绍了一种非接触、无抗蚀剂的方法,通过激光直写和现成的系统以纳米级精度对二维材料进行图案化。金属电极和二维材料之间的电接触电阻显著影响器件的性能。本论文研究了湿度对石墨烯接触电阻和薄层电阻的影响。这一见解对于在无封装或密封包装的环境中操作至关重要。多层铂硒化物 (PtSe 2 ) 是一种半金属二维材料,可在 450 ◦ C 以下合成。本论文展示了通过在器件基板上直接生长将 PtSe 2 光电探测器与硅波导集成。光电探测器在红外波长下工作,这对于集成光子电路很有前景。
因此,量子特性对于各种各样的主题都很有趣,例如量子化学计算,特别是在天体化学[4]、量子计算机[5]、量子存储器[6]、加密[7, 8]、量子发光装置[9],甚至全球规模的量子通信[10]。在例子中,混合材料在不同尺度上产生了不同的影响,量子特性的产生从亚原子尺度到宏观尺度及更远。因此,应该强调在更短尺度上发展的重要性,包括用于量子存储器的硅中单个高自旋核的相干电控制[11]和可能影响量子信息处理[12]、宏观物体的检测和分辨[13]的量子态干涉。这些量子应用使用了不同的理论模型,例如量子粒子、光子和量子态,此外还有多学科领域,这些领域推动了量子光学、纳米光学、微电路和更高宏观尺度的光学设计和工程的发展。在这里,石墨烯和碳的同素异形体可以根据凝聚电子物质 [14] 与自由电子轨道 [15] 以及可用的伪电磁特性等特性以不同的方式参与。因此,由小原子厚度形成的石墨烯表现出稳定的化学结构和具有半金属特性的薄膜。它们微小的重叠价带和导带表现出强烈的双极电场效应,例如当电压门控增加时,每平方厘米中电子和空穴的浓度很高,并且在室温下具有迁移率 [16]。这些特性基于特定的电子 sp2 轨道,这些轨道可以在约 0.335 nm 的自由间隔长度内相互作用,产生伪
二维 (2D) 材料是一类新兴的纳米材料,具有丰富的结构和卓越的性能,将带来许多变革性的技术和应用 [1]。自 2004 年首次发现石墨烯以来,二维材料家族已急剧扩展,包括绝缘体(六方氮化硼 [h-BN])、半导体(大多数过渡金属二硫属化物 [TMDCs]、黑磷 [BP] 和碲 [Te])、半金属(部分 TMDCs 和石墨烯)、金属(过渡金属碳化物和氮化物 [MXenes])、超导体(NbSe 2 )和拓扑绝缘体(Bi 2 Se 3 和 Bi 2 Te 3 )[2, 3]。二维材料的原子厚度和悬挂自由表面以及优异的光学、电学、磁学、热学和机械性能使其在光通信、电子学、光电子学、自旋电子学、存储器、热电学以及能量转换和存储器件中具有巨大的应用前景[4, 5]。著名纳米材料学家刘忠范指出,“制备决定未来”是所有材料的必然规律。在过去的十年中,一系列的制备技术被开发来制备二维材料,以满足其基础研究和各种应用的需要。鉴于二维材料的层状结构,主要的制备技术可分为两大类:自上而下和自下而上的方法。在本章中,我们将介绍近年来发展的二维材料制备技术,包括两种自上而下的方法(机械剥离和液相剥离)和一种自下而上的方法(气相生长)。这里我们给予更多的篇幅来介绍二维材料气相生长中的单晶生长、厚度控制和相位控制。
• Sessi 等人,拓扑手性半金属 PdGa 两种对映体中手性相关的准粒子干涉。自然通讯 11 ,3507 (2020) https://doi.org/10.1038/s41467-020-17261-x • Zhang 等人,拓扑超导异质结构中的竞争能级。纳米快报 21 ,2758-2765,(2021)。https://doi.org/10.1021/acs.nanolett.0c04648 • Chang 等人,SnTe/PbTe 单层横向异质结构中的涡旋取向铁电畴。先进材料,33 ,2102267 (2021)。 https://doi.org/10.1002/adma.202102267 • Küster 等人,将约瑟夫森超电流和 Shiba 态与非常规耦合到超导体的量子自旋关联起来。《自然通讯》12,1108 (2021)。https://doi.org/10.1038/s41467-021-21347-5 • Küster 等人,与超导凝聚态耦合的局部自旋之间的长距离和高度可调相互作用。《自然通讯》12,6722 (2021)。https://doi.org/10.1038/s41467-021-26802-x • Brinker 等人,原子制作的量子磁体的异常激发。《科学进展》8,eabi7291 (2022)。 DOI:10.1126/sciadv.abi7291 • Küster 等人,稀疏自旋链中的非马约拉纳模式接近超导体。美国国家科学院院刊 119,e2210589119 (2022)。https://doi.org/10.1073/pnas.2210589119 • Soldini 等人,二维 Shiba 晶格作为晶体拓扑超导的可能平台。自然物理学 19,1848–1854 (2023)。https://doi.org/10.1038/s41567-023-02104-5 • Wagner 等人,Designer-Supraleiter nehmen Form an。物理学家时代 (2024) https://doi.org/10.1002/piuz.202401701
铁电体 (FE) 具有自发和可切换的电极化,不仅在基础科学领域,而且在器件应用领域都具有重要意义。传统的铁电性,例如钙钛矿氧化物 BaTiO 3 中的铁电性,归因于 Ti d 0 和氧 p 态之间的 pd 杂化,其中长程库仑力优于短程排斥力 [1]。结果,BaTiO 3 中 Ti 偏心位移被诱导,从而破坏了中心对称性。在钙钛矿超晶格如ABO3/A'BO3和层状钙钛矿(ABO3)2(AO)[2-4]中发现的“混合不当”铁电性具有不同的起源,它源于A位上的极性模式与BO6八面体的两个非极性倾斜模式之间的三线性耦合。该机制更多地依赖于晶格的几何形状(即不同层上A阳离子的反极性位移之间的非完全补偿),而不是像传统FE那样依赖于静电力[5,6]。已经提出了不同的方法来操纵铁电性。施加在薄膜上的应变可以影响BaTiO3的电极化,也可以使量子顺电的SrTiO3变为铁电体,甚至提高其转变温度[7,8]。电荷掺杂已被证明是调节铁电性和创造新相的另一种有效方式。在传统铁电材料如 LiNbO 3 和 BaTiO 3 中,可以通过增加掺杂载流子的数量来抑制铁电位移 [9–12]。而在层状钙钛矿的三线性 Ruddlesden-Popper 相中,最近的一项研究表明,在 A 3 Sn 2 O 7 中静电掺杂会导致八面体旋转增加 [13],从而增强极化。由于载流子可以屏蔽长程相互作用并倾向于保持中心对称性,因此铁电性与金属性共存是违反直觉的。这种不寻常的共存直到 2013 年才被发现,当时 LiOsO 3 被认定为第一个“极性金属” [14] − 比它的理论预测晚了六十年 [15]。最近的研究表明,二维拓扑半金属WTe 2 也表现出可切换的极化[16]。