频率选择表面 (FSS) 由周期性排列的一维或二维金属结构组成,由于其频率谐振特性而备受关注。FSS 可以根据其尺寸、形状、厚度和其他参数在特定频率范围内选择性地反射 (带阻) 或透射 (带通) 入射电磁波,这是 FSS 的识别特征。[1] 金属和介电材料结构被广泛用于设计太赫兹 FSS 或滤波器,因为它们具有高机械强度,有助于产生功能化设计。金属 FSS 可以通过反射或吸收电磁干扰来屏蔽,但是,制造所需结构的成本很高,并且正在被碳基材料取代,以获得高频电磁特性,具有合适的成本、重量轻、无腐蚀等特点。[2] 通常,碳基材料以 sp、sp 2 和 sp 3 键合,形成相互连接的碳-碳键的长链,从而产生不同的物理和电性能。 [3] 因此,这类材料可归类为半金属或非电介质材料(如石墨烯、石墨、碳纳米管、碳纳米纤维)[4,5],因此通过在磁场和电场中应用飞秒激光脉冲产生 THz 脉冲,其纳米复合材料可表现出 THz 光跃迁、光电特性和介电特性。[6–11] 由于存在非局域 π 键电子,这些碳基材料表现出优异的 EMI 屏蔽性能。自由移动的电子与电磁波相互作用,导致反射,在共振频率下具有最大回波损耗值。[12] 过多的电磁能量会损坏周围的电路并引起不必要的噪声脉冲。Liang 等人。报道了竹状短碳纤维@Fe3O4@酚醛树脂和蜂窝状短碳纤维@Fe3O4@FeO复合材料作为高性能电磁波吸收材料,在4-18 GHz范围内成功实现了反射损耗-10 dB。[13]然而,在文献中对碳基材料在THz范围内的表征仍然没有很好的解释,关于碳基材料FSS特性的报道很少。最近,一种利用3D打印制造的碳基FSS吸收器
在二维材料中,过渡金属二硫属化物 (TMD) 因其优异的性能而备受关注。[1,2] TMD 的化学式为 MX 2 ,其中 M 是过渡金属原子(例如 Mo、W),X 代表硫属原子(例如 S、Se、Te)。[2,3] 与其他 TMD 相比,二碲化钼 (MoTe 2 ) 因其工艺可调的同素异形相,即金属 1T' 和半导体 2H 相,最近引起了强烈的研究兴趣。 [4,5] 1T'相具有正交结构,也是获得优异拓扑性质的前兆阶段,并且在单层和多层水平上作为量子自旋霍尔效应的宿主以及在单斜 T d 相中作为原始 1T'相的低温畸变而出现的 II 型 Weyl 半金属态具有特殊的意义。[6,7] 随着厚度的减小,MoTe 2 表现出从间接到直接的带隙跃迁,而其带隙相对其他 TMD 较低 [8,9],范围从块体的 0.8 eV 到单层极限的 1.1 eV。[10] 此外,由于 1T'-MoTe 2 的电导率远高于 2H 相,1T'相在固态电池电极、电化学电容器和氢析出反应方面很有前景。 [11] 另一方面,2H-MoTe 2 由于其带隙小、吸附性强、热导率低等特点,在纳米技术中具有作为二维层状材料的潜力。[10,12] 由于两种同素异形相之间的能量差异很小,MoTe 2 成为研究相变特性的独特模型材料,具有许多相关应用,如微电子领域的二维非挥发性存储器件和忆阻器。[13,14] 此外,由于 2H-MoTe 2 具有高载流子迁移率、光学透明性、薄结构和化学稳定性,它是场效应晶体管、光电子学、储能、化学和生物传感等应用的合适候选材料。[15,16] 作为一种有前途的材料,清晰的理解和可重复的生长方法对于将 MoTe 2 从实验室水平提升到生产水平至关重要。传统上,可以通过机械剥离、物理
高阶拓扑能带理论扩展了物质拓扑相的分类,涵盖了绝缘体[1-13]、半金属[13-18]和超导体[19-31]。它推广了拓扑相的体边界对应性,使得d维n阶拓扑相仅在其(d-n)维边界上具有受保护的特性,例如无带隙态或分数电荷。目前,已知有两种互补机制可产生高阶拓扑相(HOTP):(1)由于某些 Wannier 中心配置引起的角诱导填充异常[2, 5, 9, 32, 33],以及(2)边界局域质量域的存在[2, 3, 6 – 8, 34, 35]。这两种机制分别导致了角电荷的分数量子化和角处单个间隙态的存在。在一阶拓扑系统中,还存在保护每个边界上的多个状态的相。这发生在奇数维度的手性对称系统(十重分类中的 AIII 类[36 – 38])中。例如,在一维系统中,此类相由一个 Z 拓扑变量(称为绕组数 [ 39 , 40 ])来识别,它将哈密顿量的同伦类归类在第一个同伦群 π 1 [ U ( N )] 内,并对应于每个边界上简并零能态的数量。相反,应用于手性一维系统的 Wannier 中心方法仅根据电偶极矩(由 Wannier 中心的位置给出)是否量化为 0 或 e/ 2 产生 Z 2 分类。因此,从这个意义上说,Wannier 中心方法的范围相对于绕组数的范围较小;它将所有具有偶数绕组数的一维手性对称系统标记为平凡的。观察到 AIII 类 1D 系统具有比 Wannier 中心图提供的更完整的 Z 分类,这表明,类似地,AIII 类 HOTP 可能存在更完整的分类。例如,考虑堆叠 N 个拓扑四极子绝缘体 [1]。如果它们以手性对称方式耦合,则整个系统在每个角将具有 N 个零能态。然而,没有已知的拓扑四极子绝缘体 [2]。
磁性赛道存储器。[7,8] 自旋流可通过自旋霍尔效应 (SHE) 由电荷电流产生。人们对某些类别的高质量晶体化合物产生了浓厚的兴趣,这些化合物可产生源自此类材料本征电子能带结构的较大自旋霍尔效应:[9,10] 此类材料包括拓扑绝缘体 [11–13] 以及狄拉克和外尔半金属 [14–16]。然而,在这里,我们展示了非常大的自旋霍尔效应,它是由室温下由 5 d 元素和铝形成的高阻合金中的外部散射产生的,在实际应用中非常有用。自旋轨道相互作用 (SOI) 在自旋霍尔效应中起着核心作用,通常原子序数 Z 越大,自旋霍尔效应越大。此外,化合物或合金中组成元素的 Z 值差异越大,外部散射就越大,因此 SHE 也越大。[17,18] 在这方面,将铝等轻金属与 5 d 过渡金属合金化预计会产生较大的外部 SHE。[19] 在本文中,我们表明 M x Al 100 − x(M = Ta、W、Re、Os、Ir 和 Pt)合金不仅电阻率 ρ 发生剧烈变化,而且自旋霍尔角 (SHA) θ SH 和自旋霍尔 (SHC) σ SH 也随其成分 x 而变化。我们发现,在许多情况下,在临界成分下,会从高度无序的近非晶相转变为高度结晶相。此外,我们发现电阻率和 SHA 在外部散射最大化的非晶-结晶边界附近表现出最大值。为了支持这一猜想,我们发现最大电阻率的大小和相应的 SHA 随 Z 系统地变化。这表明 5 d 壳层的填充起着至关重要的作用,因为电阻率和 SHA 与 M 的 5 d 壳层中未配对电子的数量有关,因此当 M = Re 或 Os 时,ρ 表现出最大值(根据洪特规则,未配对 d 电子的数量分别为 5、6)。我们发现电阻率与 SHA 大致成线性比例,因此与 θ SH 成反比的功耗( / SH 2 ρ θ ≈ )在最大 SHA 时最小。[20] 因此,我们发现 M x Al 100 − x 是功率较小的优良自旋轨道扭矩 (SOT) 源
背景信息 - 背景信息 - 有关Paul Ehrlich和Ludwig Darmstaedter早期职业奖的背景信息背景信息2024年遥控魔术子弹Cisplatin及其两种衍生物是世界上最常见的癌症药物,在所有化学疗法治疗的大约一半中都使用。虽然它们对某些类型的癌症具有令人印象深刻的有效,但它们也会攻击健康的身体细胞,具有严重的副作用,并迅速带来抵抗力。这就是为什么长期以来一直在尝试将这些药物的无毒前体(前药)转变为癌细胞本身中的有效形式的原因。通过将现有方法整合到新的整体中,约翰内斯·卡尔斯(Johannes Karges)博士成功地做到了这一点。与他的团队一起,他构建了小珠(纳米颗粒),这些珠子(纳米颗粒)将铂制剂或它们的前药仅将其移入肿瘤组织中,在那里可以通过轻度或超声来激活它们。卡尔斯已经证明了这些方法在临床前试验中的有效性,从而振兴了保罗·埃里希(Paul Ehrlich)对可以消除特定疾病而不会损害身体的魔法子弹的愿景。保罗·埃里希(Paul Ehrlich)首先提出了“仅针对外国病原体但不会影响生物本身或其细胞的魔法子弹的愿景” 1在他发现世界上第一种化学治疗剂的几年中,大院606。与FarbwerkeHöchst一起开发,砷综合体砷胺在1910年以“ Salvarsan”为市场的市场中被引入市场,以治疗梅毒。Ehrlich知道他还没有找到理想的魔术子弹。但在他看来,他的化合物606的治疗作用远远超过了其副作用。“因此,我认为现在没有理由寻找复合'607',而忽略了现有的利益,以追求未来的改进。2“总的来说,砷胺的发现不仅是病史的里程碑。它还构成了用于治疗目的的金属复合物的第一个结构定义的合成,即使 - 严格地说 - 砷只是半金属。先进的古代文明还直观地使用了金属,例如黄金,铁和铜作为药物。金属配合物金属复合物的反应性是化合物,其核心由缺乏电子的金属组成。与这种金属键合的分子通过捐赠来补偿这种缺乏
热电和光电应用M. Ishfaq A,A.Aziz A,S。A. A. Aldaghfag B,S。Noreen C,M。Zahid C,M。物理系,科学学院,努拉·本特·阿卜杜勒拉赫曼大学,P。O。Box 84428, Riyadh 11671, Saudi Arabia c Department of Chemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan Herein, structural, optoelectronic, and thermoelectric characteristics of Ba 2 CaTeO 6 and Ba 2 CaWO 6 oxides double perovskite have been evaluated by first-principles calculations.计算形成和公差因子的焓,以确保相应的结构和热力学稳定性。ba 2 cateo 6和ba 2 cawo 6分别计算出5.87 eV和4.20 eV的MBJ。此外,计算了介电常数(ԑ1(ω)&ԑ2(ω))和其他相关参数之类的光学参数。使用Boltztrap软件包检查热电(TE)参数。450 K时Ba 2 Ca(TE/W)O 6的ZT值分别为0.76/0.79。BA 2 Cateo 6和Ba 2 Cawo 6双钙钛矿的结果表明,这些材料是基于紫外线的光学和各种TE小工具的潜在竞争者。(2024年5月12日收到; 2024年8月5日)关键字:超速带隙半导体,双钙晶,DFT,热电学,光电子,光电子学1。另一方面,E G大于3.4 eV的半导体被称为Ultrawide BandGap(UWBG)半导体[1-3]。引言具有小于2.3 eV的电子带盖(E G)的传统半导体材料,例如SI,GE和III-V化合物,已成为电子和光子学技术进步的基础。,例如,UWBG半导体GAN已超过了SI在过去15年中第二重要的材料,因为它在固态照明中使用了,这极大地改变了世界的方式使用光源。然而,GAN的高制造成本,加上其孔的不良迁移率和较低的导热率,限制了其对电子工业的全面影响[4]。在这方面,科学家们正在努力开发替代的UWBG材料。最近,双重钙棍(DPS)已成为独立的化合物家族,这些家族表现出从半金属到狭窄的频带到狭窄的频带到超宽带频带半导体的多样性特征,由于它们在理想的立方体(fm3m太空组)latte lattice lattice结构中具有各种阳离子的能力,因此具有多种多样的特性[5-7]。
Mats Fahlman 1、Simone Fabiano 1、Viktor Gueskine 1、Daniel Simon 1、Magnus Berggren 1,2 和 Xavier Crispin 1,2 * 1 瑞典诺尔雪平林雪平大学 ITN 有机电子实验室。 2 瑞典诺尔雪平林雪平大学 ITN 瓦伦堡木材科学中心。 *电子邮件:xavier.crispin@liu.se Toc Blurb 有机半导体与多种材料形成干净的界面,包括金属、其他有机半导体、电解质、电介质和生物体。在本综述中,我们讨论了这些界面的性质及其在有机电子器件功能中的核心作用。摘要未掺杂的共轭有机分子和聚合物具有半导体的性质,包括电子结构和电荷传输,可以通过化学设计轻松调整。此外,有机半导体 (OS) 可以进行 n 掺杂或 p 掺杂,成为有机导体(所谓的合成金属),并可表现出混合电子和离子电导率。与无机半导体和金属相比,有机(半)导体具有一个独特的特性:暴露在空气中时,其表面不会形成绝缘氧化物。因此,OS 与许多材料(包括金属和其他 OS)形成干净的界面。过去 30 年来,人们对 OS-金属和 OS-OS 界面进行了深入研究,并形成了一致的理论描述。自 21 世纪以来,人们越来越关注有机电子器件中的界面,这些界面涉及电介质、电解质、铁电体甚至生物有机体。所有这些界面都是有机电子器件功能的核心,界面的物理化学性质决定了光、激子、电子和离子的界面传输,以及电子向细胞分子语言的转导。 [H1] 引言有机半导体 (OS) 可用作各种 (光) 电子器件和电路中的活性材料。与硅基电子器件相比,有机电子器件具有许多独特的特性,例如大的光吸收和发射、溶液可加工性、机械柔韧性以及混合离子和电子传导。OS 包括基于共轭分子或聚合物的一大类半导体(图 1)。OS 的 π 电子形成价带和导带。在还原或氧化时,π 系统容纳负电荷或正电荷,而相反电荷的反离子则中和整个材料。重掺杂会导致电子结构发生剧烈变化,使得带隙消失,位于占据能级和未占据能级之间的费米能级可以定义为费米玻璃 1、金属 2 或半金属 3 。因此,未掺杂和掺杂的 OS 是非常不同的材料,但它们具有一个独特的特性:与无机半导体不同,暴露在空气中时其表面不会形成绝缘氧化物。因此,操作系统
过渡金属二盐元化(TMDS)的单层表现出许多具有不同结构,对称性和物理特性1-3的晶体相。在二维4中探索这些不同的结构阶段之间的过渡物理学可能会提供一种切换材料特性的方法,这对潜在的应用有影响。由热或化学方法5,6诱导;最近提出,通过静电掺杂对晶体相纯粹的静电控制是一种理论上的可能性,但尚未实现7,8。在这里,我们报告了单层钼二硫代硫醇的六边形和单斜阶段之间静电掺杂驱动的相变的实验证明(Mote 2)。我们发现相变显示了拉曼光谱中的滞后环,并且可以通过增加或降低栅极电压来逆转。我们还将第二谐波生成光谱与极化分辨的拉曼光谱结合在一起,以表明诱导的单斜相保持原始六边形相的晶体取向。此外,这种结构相变于整个样品同时发生。这种结构相变的静电掺杂控制为基于原子薄膜开发相变设备的新可能性开辟了新的可能性。分层TMD中通常研究的晶体形式是最稳定的六边形(2H)相。在这种情况下,如图有趣的是,实验研究报道了另一种分层晶体结构,即单斜(1T')相。1a,每个单层由一层六角形的过渡金属原子组成,并将其夹在两个层的chalcogen原子1之间。与散装形式不同,单层2H TMD成为直接带隙半导体和断裂反转对称性,在布里远区域9,10的角落形成了不等的山谷。这种山谷的自由度,以及在低维度中的强烈激子效应,使该阶段成为二维谷LeTronics和Optoelectronics 11-13的独特平台。在这里,在每个层中,丘脑原子在过渡金属原子周围形成一个八面体配位,沿y轴14的晶格失真(图1b)。与半导体2H相不同,半金属或金属1T'单层TMDS保留反转对称性,预计将表现出非平凡的拓扑状态2,3。2H和1T'相之间过渡的动态控制可以揭示不同晶体结构的竞争,共存和合作,以及不同的物理特性之间的相互作用15。这种控制还导致广泛的设备应用,例如记忆设备,可重新配置的电路和拓扑晶体管在原子上较薄的限制为2,16,17。到目前为止,通过在500°C下的热合成进行了实验报告TMD中的2H到1T'相变(参考5),通过元素取代18和激光照射19。但是,这些相变仅在几层或
H。Ambreen A,S。Saleem A,S。A. Aldaghfag B,M。Zahid C,S。Noreen C,M。Ishfaq A,M。Yaseen A,*一种自旋 - 呼吸链球化学和铁 - 毛线 - 毛发(软)材料和设备材料和设备实验室,物理学系,Budriculture of Fystricant of Fystricant byrive of Falthricant of Falthican bysalabad 3804040404004040404040404040年404040404040404040年。科学,努拉·宾特·阿卜杜勒拉赫曼公主,P。O。Box 84428,Riyadh 11671,沙特阿拉伯C化学系,农业大学Faisalabad,Faisalabad 38040,巴基斯坦在这项研究中,旋转极化密度功能理论(DFT)实施以预测BE 1-X CR x SE的物理特征,x se x se x se(x = 6.5%),12.5%,12.5%,12.5%。纯BESE化合物的电子特性显示出半导体的行为,但在Cr掺杂bese阐明了所有掺杂浓度的BESE半金属铁磁(HMF)。结果阐明了每CR -ATOM的总磁矩M TOT为4.0028、4.0027、4.0021和4.0002μb,分别为6.25%,12.5%,18.75%,25%的浓度,磁性浓度和磁性主要来自杂质的磁性旋转旋转密度的d- state。此外,还计算了光学参数,以确定掺杂对材料对能量跨度的响应的影响,从0到10 eV。光学研究表明,所研究的系统在紫外线范围内具有最大的吸光度和光导率,并具有最小的反射。总体结果表明,CR掺杂的硒化氏酵母(BESE)是用于旋转和光电设备的有前途的材料。在1983年,De Groot等人观察到了HMF行为。(收到2024年2月29日; 2024年4月29日接受)关键词:Spintronics,DFT,磁密度,光学参数1.从过去几十年来的引入中,对新兴的化合物组进行了密集的实验和理论工作,该化合物被认为是稀磁半导体(DMS)。DMS已在自旋产业和多功能电子设备(光电,气体传感器,现场发射设备,非挥发性存储器设备和紫外线吸收器)中使用[1-6]。DMS基于III – V和II – VI二元化合物,这是铁磁(FM)和半导体特性的组合。DMS是通过在宿主材料矩阵[7]中掺入过渡金属(TM)来实现的,该矩阵[7]由于电子特征的变化而改变了宿主系统的E G [8],从而导致一半金属铁磁材料,导致金属和半导性行为,显示金属和半导向行为。是第一次研究半赫斯勒化合物的带结构,例如PTMNSB和NIMNSB [9]。在理论上和实验上都预测了几位研究人员,HMF在各种材料中的行为,例如钙钛矿化合物LA 0.7 SR 0.7 SR 0.3 MNO 3 [10],Heusler Alloys Co 2 Mnsi [11] [11] v掺杂的MGSE/MGTE [15],Bete [16],Znse [17]和Znte [18]。
当前的研究与开发:通过适当调整竞争相的体积分数,我们实现了创纪录的巨大磁阻值(在 90 kOe 外部磁场中约为 10 15 %)。之前世界上任何地方已知的 MR% 约为 10 7 %),以及半掺杂 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 锰氧化物化合物中的超尖锐亚磁转变 [NPG Asia Materials (IF: 10.76), 10 (2018) 923]。我们仅通过调整 PLD 制备的氧化物外延 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 薄膜中的应变(应变工程)就增强了磁阻 [J. Magn. Magn. Mater. 503 (2020) 166627]。开发了采用PLD在商用热氧化Si衬底上生长优质半金属La 0.7 Sr 0.3 MnO 3 超薄膜的“两步”技术,并观察到跨晶界的自旋极化传输 [J. Magn. Magn. Mater. 527 (2021) 167771]。制备了(Sm 1-y Gd y ) 0.55 Sr 0.45 MnO 3 (y = 0.5 和 0.7)化合物,并表明晶界处的自旋极化隧穿(SPT)传输机制对化合物低场磁阻的增强起着至关重要的作用 [J.Phys: Condens. Matter 33 (2021) 305601]。报道了纳米晶 (La 0.4 Y 0.6 ) 0.7 Ca 0.3 MnO 3 化合物中由粒径驱动的非格里菲斯相向格里菲斯相的改性以及磁阻的大幅增强 [J. Alloys & Compound 745 (2018) 753]。制备了铁磁性 (La 0.67 Sr 0.33 MnO 3 ) - 电荷有序 (Pr 0.67 Ca 0.33 MnO 3 )、核壳纳米结构,并在更宽的温度范围内观察到了较大的磁热熵变值 (-∆SM ) [J. Magn. Magn. Mater. 436 (2017) 97]。在室温附近观察到了 La 0.83 Sr 0.17 MnO 3 化合物中显著较大的磁热效应,可视为磁制冷材料 [Physica B 545 (2018) 438]。我们在制备的 BiGdO 3 化合物中展示了低温下的巨磁热效应(∆SM = 25 J kg -1 K -1 & ∆T= 14.8K),并解释了其由于短程磁关联的存在而产生的成因 [J. Alloys and Compounds 846 (2020), 156221]。我们利用磁热效应构建了所制备的单晶 Sm 0.50 Ca 0.25 Sr 0.25 MnO 3 化合物的复磁相图 [J. Magn. Magn. Mater. 497 (2020) 166066]。对采用移动溶剂浮区炉制备的单晶 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 化合物的磁相变进行了实空间成像,并观察到了亚微米长度尺度上的 AFM-FM 相的存在 [J.Phys: Condens. Matter 33(2021) 235402]。我们已经证明了核心和表面自旋之间的短程磁相互作用在纳米晶掺杂锰氧化物中的交换偏置和记忆效应中的主导作用 [J. Alloys and Compounds 870 (2021), 159465]。与通常使用的磁化数据相反,利用反常霍尔效应研究了 skyrmion 载体材料 Co 3.6 Fe 4.4 Zn 8 Mn 4 的临界行为和相图。这为使用反常霍尔效应研究 skyrmion 载体和其他薄膜多层、介观器件等中的临界现象开辟了新方向。这对 skyrmion 载体材料的开发和未来 skyrmionic 存储器件的开发大有裨益 [J. of Alloys and Compounds 960 (2023) 170274]。