然而,它们的整体结构是以固定结构为特征的,当面对数据扰动时,在适应性和灵活性方面构成了挑战,从而限制了整体性能。为了解决这些局限性,本文提出了一个受近期神经科学发现启发的模块化卷积正交复发性神经网络(McOrnnmCD-ANN)。全面的文献综述将与整体架构相关的挑战背景,从而鉴定了神经网络结构,这些挑战可以增强外汇价格波动的预测,例如在最突出的交易货币中,欧元/GBP配对。通过针对最新技术的详细比较分析对提出的McOrnnMCD-ANN进行了详细评估,例如Bicudnnl-STM,CNN – LSTM,LSTM-GRU,LSTM-GRU,CLSTM,以及集合建模和单个单片CNN和RNN模型。结果表明mcornnmcd-
在过去十年中,立体定向放置电极已经成为针对多种神经和精神疾病进行深部脑记录和刺激的黄金标准。然而,目前的电极在空间分辨率和记录小群体神经元(更不用说单个神经元)的能力方面有限。在这里,我们报告了一种创新的、可定制的、单片集成的人体级灵活深度电极,它能够记录多达 128 个通道,并能够记录脑组织 10 厘米深度。这种薄的、探针引导的深度电极能够记录局部场电位和单个神经元活动(动作电位),并已在不同物种中得到验证。该设备代表了制造和设计方法的进步,扩展了临床神经病学主流技术的功能。
摘要搜索中准双β衰减(0νββ)的下一代搜索有望回答有关中微子性质和Uni-Verse Matter-Antimters不对称性的来源的深刻问题。他们将每年寻找每吨仪器同位素的事件率少于一个事件。要求发现模拟0νββ的探测器事件的发现,准确和有效的模拟至关重要。传统的蒙特卡洛(MC)模拟可以通过基于机器学习的生成模型来兼顾。这项工作描述了我们为像Kamland这样的单片液体闪烁体检测器设计的生成模型的性能,以生成没有预先固定物理模型的精确模拟数据。我们介绍了他们当前恢复低级特征并执行插值的能力。将来,这些生成模型的结果可用于通过提供高质量的丰富生成数据来改善事件分类和背景拒绝。
ISLC是一次两年一次的会议,拥有将近60年的传统,我们很高兴欢迎大家亲自参加会议。会议是单一的曲目,使每个人都更频繁地相遇,并且参与者更容易就谈话和海报进行对话。ISLC计划致力于各种半导体激光器和放大器的最新发展;从紫外线散发到远红外波长;并包括主要的激光二极管应用,例如电视和数据通信,传感和泵送。在此版本中,半导体激光材料增长的主题,与硅和硝基硅的ILL-V激光的异质整合,激光器的单片整合,光子晶体和垂直表面发射激光器,高力量激光,高力量激光器,高功率激光器,激光物理学和现象以及激光均包括在技术中。
但是,即使已经开发了数十年的电聚合物,并且具有创纪录的电学系数[7-10],但它们还是从溶液中沉积在潮湿的过程中,这对可再现的纳米结构构成了挑战,尤其是在使用Nanoscale订单的纳米级填充时,尤其是在使用Nansoscale阶段的nansoscale阶段。因此,重要的是研究聚合物的替代方法,以将有机材料及其活性功能整合到未来的光子电路中。在这里,我们提出了小分子的蒸气沉积,并提出了随后的单片分子组件的电极。真空有机分子的真空热蒸发目前被广泛用于有机光发射显示器的工业生产中[11]。这种干燥的,无溶剂的过程将使纳米级的均匀填充具有均匀的光学元素,例如插槽波导,光子
产品描述Kaocrete B和Kaocrete 2600b比大多数难治性整体构造更多的塑料材料。它们非常适合抹灰,首选用于修补衬里和挡板。仅适用于相对较薄的部分。开枪时他们的反弹极低。kaocrete d是一款用于2500°F(1371°C)的整体服务。它具有增强的流动能力,适用于一般职责施放应用。Kaocrete HS和Kaocrete HS Gun是高强度铸造和枪支混合物,可服务2600°F(1427°C)。它们结合了中间纯钙铝水泥和大小的高岭土聚集体。kaocrete HS可以在正常的水位上以极高的流量或减少的水为基础,以实现超高强度。Kaocrete HS具有良好的枪击功能。kaocrete 26是通用的,铸件/枪,低铁整体化。对于高达2600°F(1427°C)的应用,它结合了良好的体积稳定性和低成本。kaocrete 28-Li是一种通用,铸造/枪,低铁整体式,其中包含中间纯钙铝酸盐水泥。对于高达2800°F(1538°C)的应用,它是高温应用的经济选择。kaocrete 30是3000°F(1649°C),60%氧化铝整体化,设计用于高强度的高强度应用,该温度最高3000°F(1649°C)。仅专为铸造应用而设计,尤其适用于预铸造燃烧器块。kaocast是68%的氧化铝铸/枪难治性单片,可承受高达3000°F(1649°C)。它在高温下具有出色的体积稳定性。许多炉子操作员选择高级服务的高木出,其中工作温度高达3000°F(1649°C)。kaocrete 32厘米是3200°F(1760°C),铸造等级,难治性单片,氧化铝含量为70%。它具有出色的体积稳定性和高强度。
EPISTAR 开发出一种技术,使用单个大型蓝色 LED 芯片(尺寸 = 45 mil)即可实现照明应用的高光效,无需对多个小尺寸芯片及其电线进行复杂的封装。该技术使色温为 5,000 K 时光效高达 135 lm/W 的白光 LED 能够以照明应用所需的简化封装实现如此高的光效。EPISTAR 开发出一种高压单片集成直流多芯片阵列,可显著改善电流分布。因此,与普通功率芯片相比,在 5.5 W 工作时,正向电压更低,插电效率 (WPE) 更高。HV LED 芯片封装可用于一般照明和任何需要高效白光的应用。
摘要 — 深度学习的最新进展可以归因于硬件处理器和人工智能 (AI) 加速器性能的持续改进。除了基于冯诺依曼架构的传统 CMOS 加速器外,硅光子学、忆阻器和单片 3D (M3D) 集成等新兴技术也正在被探索作为后摩尔定律的替代方案。然而,由于制造工艺变化、热串扰和老化导致的故障可能会对新兴 AI 加速器的能源效率和性能造成灾难性影响。在本文中,我们分析了几种新兴 AI 加速器在不同不确定性下的性能,并提出了低成本的方法来评估故障的重要性并减轻其影响。我们表明,在所有技术中,不确定性对性能的影响可能会根据故障类型和受影响组件的参数而有很大差异。因此,本文提出的故障关键性评估技术对于提高产量是必要的。
描述 KP25x 集成压力传感器系列是基于电容原理的微型数字气压传感器 IC。它采用表面微加工,具有单片集成全数字信号调节电路,采用最先进的 0.5 微米 BiCMOS 技术实现。KP25x 提供 SPI 接口,以最少的物料清单实现直接微控制器连接。KP25x 经过单独校准和温度补偿,通过提供压力和温度的直接读数降低了软件复杂性。KP25x 提供小于 10 毫秒的快速启动时间、高达 1 kPa 的高精度和不同的灵敏度。结合 -40 至 125 C° 的宽工作温度范围、高 ESD 稳健性和出色的 EMC 性能,KP25x 非常适合汽车和工业应用中普遍存在的恶劣环境条件。KP25x 应用电路
费米大面积望远镜等太空伽马射线望远镜已使用单面硅条探测器以高分辨率测量入射伽马射线产生的带电粒子的位置。在康普顿区及以下的能量下,需要单个探测器内的二维位置信息。双面硅条探测器是一种选择;然而,这种技术难以制造,大阵列易受噪声影响。这项工作概述了单片 CMOS 有源像素硅传感器 AstroPix 的开发和实施,用于未来的伽马射线望远镜。基于卡尔斯鲁厄理工学院使用 HVCMOS 工艺设计的探测器,AstroPix 有可能保持中能伽马射线望远镜所需的高能量和角分辨率,同时通过 CMOS 芯片的双重检测和读出功能降低噪声。介绍了 AstroPix 的开发和测试状态以及未来望远镜的应用前景。