地磁场是地球的基本物理场,具有全天时、全天候、全区域等特点。因此地磁场具有丰富的参数信息。其中,地磁总场、地磁三分量、磁倾角、磁偏角、地磁梯度可用于磁导航[1]。地磁传感器具有体积小、成本低、精度高等优点。此外,地磁传感器还具有很强的抗冲击或过载能力。因此地磁传感器在商业和军事领域得到了广泛的应用。本文的目的是对地磁传感器进行校准和补偿,并最终通过校准后的地磁信息实现地磁导航[2]。现有的地面校准算法包括:1)椭球拟合法,该方法基于一个假设。即在磁传感器测量误差的影响下,磁场测量轨迹可以近似为一条椭圆轨迹。最小二乘椭球拟合法算法的本质是寻找一组椭圆参数,使得测量数据与拟合数据之间的距离在某种意义上最小化。该方法的优点是计算方便,但是对于三轴磁传感器的补偿效果有限[3]。2)磁变校准法,该方法试图计算旋转、拉伸和平移因子,将椭球轨迹校正为圆轨迹。然后利用该模型滤除异常信号。该方法同样易于实现,但补偿标定的精度也有限[4]。3)卡尔曼滤波法。卡尔曼滤波是一种常见的线性系统参数估计方法。可以采用扩展卡尔曼滤波(EKF)和无迹卡尔曼滤波(UKF)进行补偿。
混合电动车辆电池组中的电池管理系统必须估算该包目前的工作状况的值。其中包括:电池最新电池,电力褪色,容量褪色和瞬时功率。估计机制必须随着细胞的年龄而适应细胞特征的变化,因此在包装的寿命中提供了准确的估计值。在一系列三篇论文中,我们提出了基于扩展的卡尔曼过滤(EKF)的方法,这些方法能够实现锂离子聚合物电池组的这些目标。我们希望它们也将在其他电池化学上运作良好。这些论文涵盖了所需的数学背景,细胞建模和系统识别要求以及最终解决方案以及结果。第三篇论文结束了该系列的结论,其中列出了五个其他应用,在典型的BMS算法中可以使用EKF或EKF的结果:在车辆闲置之后的初始化状态估计值一段时间后的初始化;在估计值中估算具有动态误差界限的最新电荷;估计包装包/充电功率;跟踪更改包装参数(包括功率褪色和容量褪色)作为包装年龄,因此提供了对最新健康状况的定量估计;并确定必须均等的细胞。提出了包装测试的结果。©2004 Elsevier B.V.保留所有权利。
卡尔曼滤波器组在飞机发动机故障诊断中的应用 Takahisa Kobayashi QSS Group, Inc. 俄亥俄州克利夫兰 44135 电子邮件:Takahisa.Kobayashi@grc.nasa.gov Donald L. Simon 美国陆军研究实验室 格伦研究中心 俄亥俄州克利夫兰 44135 电子邮件:Donald.L.Simon@grc.nasa.gov 摘要 本文将卡尔曼滤波器组应用于飞机燃气涡轮发动机传感器和执行器故障检测和隔离 (FDI) 以及组件故障检测。这种方法使用多个卡尔曼滤波器,每个滤波器都用于检测特定的传感器或执行器故障。如果确实发生故障,除使用正确假设的滤波器之外的所有滤波器都会产生较大的估计误差,从而隔离特定故障。同时,估计了一组指示发动机部件性能的参数,以检测突然退化。将所提出的 FDI 方法应用于标称和老化条件下的非线性发动机仿真,并给出了巡航运行条件下各种发动机故障的评估结果。证明了所提出的方法能够可靠地检测和隔离传感器和执行器故障。术语 A16 可变旁通管道面积 A8 喷嘴面积 BST 增压器 CLM 组件级模型 FAN 风扇 FDI 故障检测和隔离 FOD 异物损坏 HPC 高压压缩机 HPT 高压涡轮 LPT 低压涡轮 P27 HPC 入口压力 PS15 旁通管道静压 PS3 燃烧室入口静压 PS56 LPT 出口静压 T27D 增压器入口温度 T56 LPT 出口温度
摘要 — 本文使用来自自动识别系统 (AIS) 的实时数据和扩展卡尔曼滤波器 (EKF) 设计来解决船舶运动估计问题。AIS 数据从全球船舶传输,甚高频 (VHF) AIS 接收器以美国国家海洋电子协会 (NMEA) 指定的格式接收信号作为编码的 ASCII 字符。因此,必须使用解析器解码 AIS 语句以获得实时船舶位置、航向和速度测量值。状态估计用于碰撞检测和实时可视化,这是现代决策支持系统的重要特征。使用来自挪威特隆赫姆港的实时 AIS 数据验证了 EKF,并证明估计器可以实时跟踪船舶。还证明了 EKF 可以预测船舶的未来运动,并在防撞场景中分析了不同的规避动作。索引术语 — 卡尔曼滤波器、状态估计、运动预测、碰撞检测、无人水面航行器、船舶
首先,根据泰勒展开式对最近发展起来的非线性滤波方法——Cuature卡尔曼滤波器(CKF)的性能评估进行了分析。理论分析表明,非线性滤波方法CKF只有在非线性系统中实现时才显示出其优势。类似地,非线性方向余弦矩阵(DCM)表达式被纳入紧密耦合的导航系统中,以表示真实导航坐标系和估计导航坐标系之间的对准误差。仿真和实验结果表明,在不可观测的大指向误差下,以及在 GPS 故障且指向误差快速累积导致 psi 角的表达式失效的情况下,CKF 的性能优于扩展卡尔曼滤波器(EKF),从而表达一定程度的非线性。
先进的大翼展飞机具有更大的结构灵活性,但可能出现不稳定或操纵性差。这些缺点需要稳定性增强系统,该系统需要主动结构控制。因此,飞行中机翼形状的估计有利于控制非常灵活的飞机。本文提出了一种基于扩展卡尔曼滤波估计柔性结构状态的新方法,该方法利用了辅助惯性导航系统中采用的思想。将不同机翼位置的高带宽率陀螺仪角速度集成在一起,以提供短期独立惯性形状估计解决方案,然后使用额外的低带宽辅助传感器来限制发散估计误差。所提出的滤波器实现不需要飞机的飞行动力学模型,简化了通常繁琐的卡尔曼滤波调整过程,并允许在机翼偏转较大和非线性的情况下进行准确估计。为了说明该方法,通过使用瞄准装置作为辅助传感器的模拟来验证该技术,并进行可观测性研究。与文献中基于立体视觉的先前研究相比,我们发现了一种传感器配置,仅使用一个摄像头和多个速率陀螺仪分别用于卡尔曼滤波更新和预测阶段,即可提供完全可观察的状态估计。
摘要。锂离子(锂离子)电池在电动汽车的性能中起着至关重要的作用,这是由于其独特的特性和紧凑的尺寸。为了确保这些电池的寿命延长,用户必须采取其他预防措施。受多种道路条件影响的永久磁铁同步电动机(PMSM)驱动器应用的可变负载扭矩增加了情况。鉴于电动汽车运行(EVS)涉及的众多电气传感器和机械组件,评估锂离子电池的充电状态(SOC)被证明是一个重大挑战。在这种情况下,SOC可能会受到嘈杂的测量,导致电池随着时间的推移的性能下降。本文提议利用Kalman过滤器从嘈杂的测量结果估算实际SOC,依靠间接测量作为提高准确性的基础。
摘要 - 基于术前图像的术语脑移位降低了神经元研究系统的准确性。在本文中,可以通过计算脑移位的估计来解决此问题,该估计可用于更新术前的大脑图像。因此,可以提高导航的精度。在这方面,使用大脑变形和受约束的卡尔曼过滤器(ACKF)提出了一种脑移位估计方法。另外,当风险函数是估计误差方差时,获得的ACKF估计是最佳无偏见的最小值估计。此外,在ACKF和两种现有方法(即受约束的卡尔曼滤波器(CKF)和基于地图集的方法)之间进行了比较。比较表明,ACKF会导致更准确的估计,并且需要更少的计算时间。最后,通过模拟说明了提出的ACKF方法对CKF和基于ATLAS的方法的至高无上。
图 3.11:GPS 与垂直陀螺仪姿态.................................................................................... 41 图 3.12:GPS 与垂直陀螺仪姿态.................................................................................... 41 图 3.13:卡尔曼滤波器序列...................................................................................... 42 图 3.14:卡尔曼滤波器状态和协方差矩阵的进展....................................................... 46 图 3.15:扩展卡尔曼滤波器 (EKF) 序列.................................................................... 47 图 4.1:YF-22 机载计算机 2.................................................................................... 52 图 4.2:NovAtel GPS.................................................................................................... 53 图 4.3:Goodrich Systems 垂直陀螺仪.................................................................... 54 图 4.4:IMU 与 GPS 测量获取率............................................................................. 55 图 4.5:GPS 位置(放大)..................................................................................... 57 图 4.6:GPS 位置 -瞬时信号丢失................................................................................ 57 图 4.7:方差计算的稳定状态时间段.................................................... 59 图 4.8:GPS 辅助 INS/垂直陀螺仪框图.................................................... 61 图 4.9:滤波处理序列....................................