摘要:运动想象 (MI) 具有频率特异性特征,是基于脑电图 (EEG) 的脑机接口识别操作员意图的范例之一。从理论上讲,在传统方法中很难在不产生很大延迟的情况下提取频率特异性特征。在本文中,我们尝试使用带有卡尔曼滤波器的周期性扰动观测器快速检测 alpha 和 beta 波段幅度。对原始 EEG 信号的响应表明,周期性扰动观测器可以比带通滤波器更快地提取 MI 的特征。
脑网络是复杂的动态系统,其中不同区域之间的定向相互作用在感觉、认知和运动过程的亚秒级尺度上发展。然而,由于神经信号及其未知噪声成分的高度非平稳性质,动态脑网络建模仍然是当代神经科学的主要挑战之一。在这里,我们提出了一种基于卡尔曼滤波器创新公式的新算法,该算法经过优化,可在未知噪声条件下跟踪快速发展的定向功能连接模式。自调节优化卡尔曼滤波器 (STOK) 是一种新型自适应滤波器,它嵌入自调节记忆衰减和递归正则化,以确保高网络跟踪精度、时间精度和对噪声的鲁棒性。为了验证所提出的算法,我们在现实替代网络和真实脑电图 (EEG) 数据中与经典卡尔曼滤波器进行了广泛的比较。在模拟和真实数据中,我们都表明 STOK 滤波器估计定向连接的时间频率模式具有显著优越的性能。STOK 滤波器的优势在真实 EEG 数据中更加明显,其中该算法从大鼠的颅脑 EEG 记录和人类视觉诱发电位中恢复了动态连接的潜在结构,与已知生理学高度一致。这些结果确立了 STOK 滤波器是模拟生物系统中动态网络结构的强大工具,有可能对大脑功能产生的网络状态的快速演变产生新的见解。
a 基尔大学医学心理学和医学社会学系,德国基尔 D-24113。b 基尔大学实验与应用物理研究所,德国基尔 24098。c 基尔大学神经儿科系,德国基尔 D-24098。d 明斯特大学生物磁学和生物信号分析研究所,德国明斯特 D-48149。e 基尔大学工程学院数字信号处理和系统理论组,德国基尔 D-24143。f 伯特利福音医院儿童和青少年精神病学和心理治疗系,德国比勒费尔德 33617。
此类任务同样可以先离线学习状态转移预测模 型再使用 MPC 计算控制输入 [28-29] ,或直接使用强 化学习方法 [68-69] ,但需要大量训练数据且泛化性较 差。在准静态的局部形变控制中,更常用的方法是 在线估计局部线性模型。该模型假设线状柔性体形 状变化速度与机器人末端运动速度在局部由一个雅 可比矩阵 JJJ 线性地联系起来,即 ˙ xxx ( t ) = JJJ ( t ) ˙ rrr ( t ) ,其 中 ˙ xxx 为柔性体形变速度, ˙ rrr 为机器人末端运动速度。 由于使用高频率的闭环反馈来补偿模型误差,因此 完成任务不需要非常精确的雅可比矩阵。 Berenson 等 [70-71] 提出了刚度衰减( diminishing rigidity )的概 念,即离抓取点越远的位置与抓取点之间呈现越弱 的刚性关系,并据此给出了雅可比矩阵的近似数学 表示。此外,常用的方法是根据实时操作数据在线 估计雅可比矩阵,即基于少量实际操作中实时收集 的局部运动数据 ˙ xxx 和 ˙ rrr ,使用 Broyden 更新规则 [72] 、 梯度下降法 [73] 、(加权)最小二乘法 [33-34,74] 或卡尔 曼滤波 [75] 等方法在线地对雅可比矩阵进行估计。 该模型的线性形式给在线估计提供了便利。然而, 雅可比矩阵的值与柔性体形状相关,因此在操作 过程中具有时变性,这使得在线更新结果具有滞 后性,即利用过往数据更新雅可比矩阵后,柔性体 已经移动至新的形状,而新形状对应的雅可比矩阵 与过往数据可能并不一致。同时,完整估计雅可比 矩阵的全部元素需要机器人在所有自由度上的运 动数据,这在实际操作过程中难以实现,为此一些 工作提出根据数据的奇异值进行选择性更新或加 权更新 [74] 。此外,此类方法需要雅可比矩阵的初 值,一般在操作前控制机器人沿所有自由度依次运 动,收集数据估计初始位置的雅可比矩阵。受上述 问题影响,在线估计方法往往仅适用于局部小形变 的定点控制,难以用于长距离大形变的轨迹跟踪。 Yu 等 [31] 提出 ˙ xxx = JJJ ( xxx , rrr ) ˙ rrr 的模型形式,其中 JJJ ( · ) 为 当前状态至雅可比矩阵的非线性映射,待估计参数 为时不变形式。基于该模型,该方法将离线学习与 在线更新无缝结合,实现了稳定、平滑的大变形控 制。 Yang 等 [76-77] 使用模态分析方法建立柔性体模
该项目的范围是研究使用噪声相关性和卡尔曼滤波来提高包含多个 MEMS 陀螺仪的传感器阵列性能的可能性。该项目基于 Bayard 和 Ploen 的工作,他们通过模拟表明,通过结合有利相关的陀螺仪的测量值可以提高 MEMS 陀螺仪的性能。此外,该项目还研究了使用期望最大化识别噪声相关性的可能性。该项目是与 CDL Scotland 合作提出和实施的,CDL Scotland 是海底惯性导航传感器和解决方案的开发商和提供商。CDL 为该项目设计了一个定制传感器板,其中包含八个中级陀螺仪和附加接口硬件。
我们经常在媒体上听到有关新的太空任务的消息。它涉及距离、行进速度、仪器、研究目标和时间范围。但获取的数据如何从太空探测器传输到地球通常没有被提及。例如,几乎所有任务的共同特征——美国航天局NASA的深空网络——几乎不为公众所知。本书对此进行了较为详细的介绍,并描述了卫星、空间站、太空探测器和着陆器如何与地球通信。选定的卫星系统和太空任务作为说明性示例。最后,读者将了解星际通信需要考虑哪些因素,如何以现实的方式处理 SETI 主题,以及激光束和量子在太空通信中发挥什么作用。从内容上看:
如果一个光场恰好包含 k 个光子,则它处于 k -光子态。由于其高度量子化的特性,光子态在量子通信、计算、计量和模拟方面有着广阔的应用前景。最近,人们对各种光子态的产生和操纵的兴趣日益浓厚。控制工程领域的一个新的重要问题是:如何分析和合成由光子态驱动的量子系统以实现预定的控制性能?在本综述中,我们引入了单光子态,并展示了量子线性系统如何处理单光子输入,以及如何使用线性相干反馈网络来塑造单光子的时间脉冲。我们还介绍了一种单光子滤波器。(本综述的扩展版本可在 arXiv:1902.10961 找到。)
摘要:锂离子电池是一种绿色环保的储能元件,因其能量密度高、循环性能好而成为储能的首选。锂离子电池在充放电循环过程中会发生不可逆过程,造成电池容量的不断衰减,最终导致电池失效,准确的剩余使用寿命(RUL)预测技术对储能元件的安全使用和维护具有重要意义。本文综述了国内外储能元件RUL预测方法的研究进展。首先明确储能元件的失效机理,然后总结以锂离子电池为代表的储能元件RUL预测方法;其次,分析了基于卡尔曼滤波和粒子滤波的数据-模型融合方法在锂离子电池RUL预测中的应用,并讨论了储能元件RUL预测面临的问题及未来的研究展望。