摘要:KITSUNE 卫星是一个由 6 个单元组成的立方体卫星平台,主要任务是在低地球轨道 (LEO) 上进行 5 米级地球观测,有效载荷采用 31.4 MP 商用现成传感器、定制光学器件和相机控制板开发。尽管有效载荷是为地球观测而设计的,并以捕捉地面上的人造图案为主要任务,但计划通过卷积神经网络 (CNN) 方法对野火图像进行分类作为次要任务。因此,KITSUNE 将成为第一颗使用 CNN 对 LEO 野火图像进行分类的立方体卫星。在本研究中,卫星上采用了深度学习方法,通过预处理而不是在地面站执行图像处理的传统方法,以减少下行链路数据。 Colab 中生成的预训练 CNN 模型保存在 RPi CM3+ 中,其中,上行链路命令将执行图像分类算法并将结果附加到捕获的图像数据上。地面测试表明,在使用 MiniVGGNet 网络对卫星系统上运行的野火事件进行分类时,它可以实现 98% 的总体准确率和 97% 的 F1 得分成功率。同时,还比较了 LeNet 和 ShallowNet 模型,并在 CubeSat 上实施,F1 得分分别为 95% 和 92%。总体而言,这项研究展示了小型卫星在轨道上执行 CNN 的能力。最后,KITSUNE 卫星将于 2022 年 3 月从国际空间站部署。
摘要 本文介绍了用于 FACSAT-2 (SAT-CHIRIBIQUETE) 太空任务的立方体卫星的关键设计,该卫星用于对哥伦比亚领土进行地理参考观测和分析,以保护环境。该卫星通过两个有效载荷提供电光多光谱图像(分辨率在 4.75 m 和 5 m 之间)数据,同时使用 1000-1700 nm 短波红外光谱范围内的光谱仪提供数据,用于监测温室气体。根据高级技术要求和操作概念,进行了空间、地面和发射段架构的输入识别和定义,定义了一个六单元卫星、一个位于卡利市的带有 S/X 波段天线的地面段,以及使用具有发射器相关特性的 EXOpod。根据欧洲航天局的 ECSS 标准,详细定义和表征了机械结构、电力系统、数据和命令处理系统、机载通信系统和姿态控制和确定系统的子系统。初始设计方案是根据空间、操作和技术要求以及可用于太空任务的财务预算定制的。值得注意的是,本文包含哥伦比亚的独家贡献,包括 S/X 波段天线的定义、加密软件以及物理接口板的设计和实施,以实现卫星总线和 Argus 2000 光谱仪之间的电子兼容性。关键词:FACSAT-2;立方体卫星;关键设计;航天器子系统;空间架构;MultiScape;Argus;地球观测;空间发展;哥伦比亚在太空。
摘要 卫星用于导航、通信、海洋学、天文学等。卫星的尺寸和形状多种多样。根据卫星的任务,使用不同的子系统。这些子系统安装在外壳内,以保护它们免受太空环境的影响。这个外壳也称为卫星主结构或机械结构,由耐用材料制成,可以承受发射和在轨期间的恶劣条件。卫星质量的优化现在至关重要,因为卫星每天都在损失质量以降低制造和发射成本。本综述首先介绍卫星分类和子系统的概况。然后,演示卫星自身所受的不同类型的机械载荷分析。探索了提升卫星机械结构性能的先进方法,重点关注等网格和蜂窝夹层结构的优化参数对卫星主结构机械性能的影响。简要介绍了小卫星的组装、集成和测试(AIt)。最后,总结了提高卫星主结构力学性能的重要潜在设计和进一步研究的挑战。
摘要 — 卫星是现代社会不可或缺的一部分,它通过现代电信、全球定位和地球观测等方式对我们的生活方式做出了重大贡献。近年来,尤其是在新太空时代到来之后,卫星部署的数量呈爆炸式增长。尽管卫星安全至关重要,但学术界对卫星安全性,尤其是机载固件安全性的研究却很少。这种缺乏可能源于现在已经过时的通过模糊性实现安全性的假设,从而有效地阻碍了对卫星固件进行有意义的研究。在本文中,我们首先提供针对卫星固件的威胁分类。然后,我们对三个现实世界的卫星固件映像进行了实验性安全分析。我们的分析基于一组现实世界的攻击者模型,并在所有分析的固件映像中发现了几个安全关键漏洞。我们的实验性安全评估结果表明,现代在轨卫星存在不同的软件安全漏洞,而且往往缺乏适当的访问保护机制。它们还强调了克服流行但过时的假设的必要性。为了证实我们的观察,我们还对 19 名专业卫星开发商进行了调查,以全面了解卫星安全状况。
12.10 –12.25乔治·米利斯(George Milis),菲比研究与创新有限公司董事兼创新经理,水质监测服务作为哥白尼紧急管理服务的候选进化服务元素
摘要:物联网(IoT)设备及其应用的数量急剧增加。此外,越来越多的动力可以在全球范围内集成物联网网络,利用卫星将物联网连接范围扩展到地理位置上的偏远地区。因此,确保IoT网络的卫星回程安全性至关重要。近年来,量子计算的稳定进步可能会根据计算硬度的假设来消除经典的加密方法,从而激发了对量词后加密的需求。量子计算算法已经开发出来,一旦实现了足够规模的量子计算机,将能够有效地破坏经典的加密系统(在多项式时间复杂性下)。在物理层以量子密钥分布(QKD)的形式出现了一种在物理层上保护信息的有前途的方法。QKD利用光的基本物理特性来保证信息理论安全性。研究QKD以确保卫星回程的应用和标准化的研究仍处于起步阶段。本文简要概述了QKD的理论基础,同时还提供了当代QKD协议的调查。它评估了这些协议在典型的卫星网络体系结构的背景下确保卫星回程的能力。此外,它突出了与这项工作相关的技术挑战。最后,它提出了将来的研发方向,以将卫星集成的物联网域的协议和标准化指导。在QKD可以演变为保护卫星iot的全球规模解决方案之前,必须克服几个挑战。秘密关键发电率在可信赖的QKD卫星体系结构的实际证明中仍然非常低。需要进一步的研究来克服或减轻基本利率距离的权衡,然后在物联网应用程序中可以将卫星QKD视为可行。不依赖受信任节点的替代方案取决于诸如量子中继器和量子记忆之类的新生技术。从理论上讲,QKD提供了完美的信息 - 理论安全,但它仍然容易受到利用现实世界设备中缺陷的攻击。需要进一步的努力来开发可以保护上述挑战的QKD协议。
高精度望远镜 (HPT)、带液晶可调滤波器的空间多光谱成像仪 (SMI w/ LCTF)、中场相机 (MFC)、广角相机 (WFC)、增强分辨率相机 (ERC)、业余无线电装置 (ARU)、天顶太阳传感器模块 (SAS-Z) 和扩展姿态控制单元 (ACU-Ex)
摘要 - 全球导航卫星系统(GNSSS)越来越受到干扰,例如来自干扰器和欺骗者的干扰,它们的性能仍然在挑战城市和室内方面挑战。因此,全世界都在努力开发互补定位,导航和时机(PNT)解决方案。当前研究下的一种这种互补方法是所谓的Leo-PNT,即基于低地球轨道(LEO)卫星的PNT溶液,尤其是在小型或小型化的卫星上。此类卫星的建筑物,发射和维护成本低至中度。在设计新的Leo-PNT解决方案时将要克服几个挑战,并结合了所有三个卫星段:1)信号空间(SIS)或空间段; 2)接地段; 3)用户/接收器段。本文在无线通道传播障碍的固有约束下,对SIS设计挑战进行了调查,以及针对SIS功能的一些设计建议。我们基于MATLAB Quadriga Simulator,在现实无线通道模型下解决了不同的星座类型,可实现的覆盖范围和精度(GDOP)边界的几何稀释以及可实现的载体与噪声比(CNR)。我们还考虑了一方面的低成本/卫星数量低/低成本/较低的卫星数量,另一方面出现了良好的CNR,另一方面,轨道上的卫星数量低/较低,另一方面讨论了有关LEO-PNT SIS设计的几个优化标准。
CogniSAT-XE1 TM 板的数据传输和命令控制通过 USB 或以太网接口进行。该板充当机载计算机 (OBC) 上客户端应用程序的服务器。在 OBC 上运行,板操作完全由 Ubotica™ 软件控制。OBC 通过所选接口将固件(启动映像)和 NN blob 和/或 DPE 配置传输到板。初始传输后,图像可以通过接口传输到板,操作结果通过同一接口传回。板的电源循环需要重新传输固件。