能量代谢重编程是癌症的重要标志,为探索癌症的发展提供了新的研究视角,但卵巢癌抗糖酵解治疗的最关键靶点仍不清楚。因此,本研究利用Oncomine、GEPIA和HPA数据库,结合不同组织类型的卵巢癌临床标本,综合评估卵巢癌中糖酵解相关代谢物转运体和酶的表达水平。我们选取Kaplan-Meier Plotter数据库中预后价值最高的磷酸甘油酸激酶1(PGK1)进行后续验证。免疫化学检测证实PGK1在卵巢癌中高表达,PGK1表达水平是卵巢癌患者生存和预后的独立危险因素。功能分析显示PGK1表达水平与中性粒细胞浸润呈正相关。细胞实验证实,抑制卵巢癌细胞中PGK1的表达可降低上皮间质转化(EMT)过程,导致细胞迁移和侵袭能力丧失。小分子NG52剂量依赖性地抑制卵巢癌细胞的增殖。此外,NG52通过抑制PGK1活性来减少EMT过程并逆转Warburg效应。因此,PGK1是卵巢癌抗糖酵解治疗的一个有吸引力的分子靶点。
简单的摘要:低度浆液卵巢癌是一种罕见的卵巢癌,通常具有懒惰的生长并影响年轻女性。它的标记表明它可能会对激素治疗有反应,但不幸的是,这种治疗对许多患者的效果不佳,因为癌症对其具有抵抗力。我们不完全理解为什么会发生这种情况。在乳腺癌中,研究了类似的抗药性机制,因此我们正在探索是否可以应用我们在那里学到的知识来改善这种类型的卵巢癌的治疗方法。这篇评论探讨了为什么激素疗法可能会停止从事卵巢癌的工作,并探索使其更有效的新方法。目标是为晚期低级浆液卵巢癌患者找到更好的治疗选择,他们目前没有很多治疗选择。
卵巢癌死亡率居妇科恶性肿瘤之首(Li et al., 2019a,b),晚期卵巢癌五年生存率仅为20%-25%(Torre et al., 2015)。2018年,美国约有22,240例新发卵巢癌病例,其中半数以上患者死亡(Torre et al., 2018)。尽管手术联合化疗对卵巢癌有一定疗效,但50%的患者会出现复发并最终死于该恶性肿瘤(Liao et al., 2016)。化疗是临床治疗卵巢癌的关键,但化疗耐药性成为该疗法的主要障碍。因此,影响卵巢癌化疗疗效的因素目前已得到广泛研究和考虑(Bandera et al.,2015;Kanlikilicer et al.,2018;Zuo et al.,2020)。此外,分子靶向治疗多年来也得到了广泛的研究和应用,一些靶向药物如贝伐单抗、奥拉帕尼和尼拉帕尼已被证明可用于治疗卵巢癌(Tomao et al.,2013;Walsh,2018)。研究指出,化疗和分子靶向药物的疗效与卵巢癌中某些基因的表达密切相关(Shaw and Vanderhyden,2007;Li et al.,2019a,b;Hao et al.,2021),但关于这一现象的许多内容仍不清楚。
大多数LGSOC患者对基于铂的化学疗法没有反应,大多数人最终会经历疾病的进展或复发。进行性疾病被定义为疾病,尚未对基于铂的化学疗法有反应。复发性疾病被定义为疾病,最初对基于铂的化学疗法的治疗+/-手术有反应,但随后复发。一旦发生疾病的进展或复发,就可以提供其他治疗选择,包括激素治疗(如果个人以前没有接受过这种治疗)或进一步的化学疗法。进一步的化学疗法选择包括单独使用紫杉醇或盐酸二乙酰脂肪体阿霉素(PLDH)(NICE GUIDANCE TA389 2016)。但是,由于LGSOC的化学疗法性质,这些治疗方法在防止进一步疾病进展方面的有效性通常受到限制。
铁死亡是一种不同于自噬、凋亡和坏死的新型受调控的细胞死亡方式,主要由铁依赖性的脂质过氧化所引起。研究表明,铁死亡过程涉及许多常规信号通路和生物学过程。近年来,研究表明铁死亡在包括卵巢癌在内的恶性肿瘤发生、发展和转移中起重要作用,并与化疗、放疗、免疫治疗等联合应用,能抑制卵巢癌细胞的生长,提示铁死亡在卵巢癌治疗中具有重要意义,可能成为新的治疗靶点。本文就铁死亡的特点、其发生机制、在卵巢癌中的作用及其在卵巢癌治疗中的潜在应用进行综述。
构建共表达模块,对这些样本进行聚类分析,结果如图S4A所示。然后,我们筛选出软阈值功率(图3A),当功率值等于16时,独立度可达0.9,因此利用功率值构建共表达模块,结果显示共鉴定出18个不同的基因共表达模块(图3B)。我们分析了模块特征基因与群体性状的相关性,发现只有一个共表达模块与SP和MP显著相关(图3C)。蓝色模块中有1154个基因与SP呈负相关。我们对蓝色模块中的基因进行PPI网络分析,描绘了整个网络和前3个子网络(图
人们越来越认识到肿瘤微环境(由肿瘤细胞、周围基质细胞和基质元素组成)在促进和维持 EOC 化学耐药性、复发和转移方面的作用 (8-10)。传统上,细胞毒性化疗的目的是作用于 EOC 肿瘤细胞本身,使其死亡 (11)。然而,表征 EOC 化学耐药机制的尝试表明,肿瘤细胞内部(肿瘤细胞内在)以及基质细胞和肿瘤细胞之间的信号传导(肿瘤细胞外在)都存在许多信号传导途径 (6,12,13)。这种焦点转移揭示了 EOC 信号传导中新的复杂层次,这可能是有希望的临床前发现与未能成功转化为有效临床疗法之间令人沮丧的分歧的根本原因。
卵巢癌中的抽象PARP抑制剂一直是过去十年的突破性疗法,受到积极试验结果的驱动,并得到了原始药理原理的支持。然而,有了成熟的数据,有害的生存结果导致2022年在美国食品和药物管理局(FDA)中最先进的环境指示中所有认可的PARP抑制剂(作为第三或后续行中的单一疗法)中的所有批准的PARP抑制剂。还限制了另外两个迹象,作为复发后的维护。在这项工作中,基于每种环境中汇总的荟萃分析,我们质疑Oncol-Ogy的独特情况:在前线环境中可以看到生存益处,同时,以后线的生存下降。这一原始特征是由PARP抑制剂的独特生物学作用(通过合成致死性)在卵巢癌和同源修复缺乏的患者中解释的。另一种解释可能是试验设计:以后的线减少可以部分解释为什么在早期环境中看到有益的结果,只是避免了这些试验中实验组中PARP抑制剂的晚期暴露。在某些试验中看到的高跨界率进一步支持了这一替代假设。 我们认为,我们的分析和最新的PARP抑制剂生存结果值得重新评估这些化合物在卵巢癌治疗景观中的位置。在某些试验中看到的高跨界率进一步支持了这一替代假设。我们认为,我们的分析和最新的PARP抑制剂生存结果值得重新评估这些化合物在卵巢癌治疗景观中的位置。
卵巢癌是女性最常见的死亡原因之一。卵巢癌经常在晚期诊断出,其存活率取决于疾病的阶段,而早期阶段大多是无症状的。早期发现该疾病是促进患者良好预后的最重要步骤之一,并且对药物治疗的反应出色,因为基因组不稳定性是卵巢癌的标志之一。在高级阶段,单个患者接受了有助于控制其生长,分裂和扩散的药物。具有靶向疗法的新一代技术和生物标志物正在迅速出现,包括microRNA,Picorna,非编码RNA及其肿瘤内部信号传导途径,血管生成,激素受体和免疫因子。由于一些有效的筛选策略,现在可以早日检测。卵巢癌被分为不同的临床亚型,并且每个亚型中仍然存在广泛的遗传和进行性多样性。一旦在具有不同临床亚型的晚期诊断出卵巢癌后,新一代的治疗方法(例如靶向治疗)就会成为可能。现在,基于由DNA水平(SNP和表观遗传学),RNA水平(mRNA,microRNA,PICO-RNA,非编码RNA)和蛋白质水平组成的新兴生物标志物和蛋白质水平,现在是时候评估与这种类型疾病治疗的生物标志物相关的早期状态和进展。
卵巢癌仍然是最致命的妇科恶性肿瘤,主要是因为其化疗耐药性和高复发率。越来越多的证据表明,SOX2 异常表达与卵巢癌患者的化疗耐药性和不良预后有关。在本研究中,我们旨在阐明卵巢癌细胞中 SOX2 异常表达的机制。通过检查多种卵巢癌细胞系和一组临床肿瘤样本,我们观察到卵巢癌细胞系和肿瘤中 SOX2 广泛过表达。为了确定导致卵巢癌细胞中 SOX2 过表达的信号通路,我们筛选了一组针对 30 种主要细胞激酶的小分子激酶抑制剂。在确定的热门药物中,AKT 抑制剂是其中之一。我们证明,抑制或敲低 AKT1 可大幅下调 SOX2 蛋白水平,损害 SOX2 阳性卵巢癌细胞的生长和干细胞特性,并显著提高 SOX2 阳性卵巢癌细胞对铂类药物的敏感性。从机制上讲,我们发现 AKT1 主要通过增强其蛋白质稳定性来驱动 SOX2 过表达,并通过在 T116 位点磷酸化 SOX2 来实现这一点。总之,我们的研究揭示了卵巢癌中驱动 SOX2 过表达的潜在机制,并强调了药理学抑制 AKT1 是一种潜在的治疗策略,可提高 SOX2 阳性卵巢癌对铂类药物的敏感性。