该药品需要接受额外监测。这将能够快速识别新的安全信息。请医疗保健专业人员报告任何疑似不良反应。有关如何报告不良反应,请参见第 4.8 节。 1. 药品名称 Evrenzo 20 mg 薄膜包衣片 Evrenzo 50 mg 薄膜包衣片 Evrenzo 70 mg 薄膜包衣片 Evrenzo 100 mg 薄膜包衣片 Evrenzo 150 mg 薄膜包衣片 2. 定性和定量组成 Evrenzo 20 mg 薄膜包衣片 每片含 20 mg 罗沙司他。 Evrenzo 50 mg 薄膜包衣片 每片含 50 mg 罗沙司他。 Evrenzo 70 mg 薄膜包衣片 每片含 70 mg 罗沙司他。 Evrenzo 100 mg 薄膜包衣片 每片含 100 mg 罗沙司他。 Evrenzo 150 mg 薄膜包衣片 每片含 150 mg 罗沙司他。 已知作用的赋形剂 每片 20 mg 薄膜包衣片含 40.5 mg 乳糖、0.9 mg Allura Red AC 铝色淀和 0.21 mg 大豆卵磷脂。 每片 50 mg 薄膜包衣片含 101.2 mg 乳糖、1.7 mg Allura Red AC 铝色淀和 0.39 mg 大豆卵磷脂。 每片 70 mg 薄膜包衣片含 141.6 mg 乳糖、2.1 mg Allura Red AC 铝色淀和 0.47 mg 大豆卵磷脂。每片 100 mg 薄膜包衣片含 202.4 mg 乳糖、2.8 mg Allura Red AC 铝色淀和 0.63 mg 大豆卵磷脂。每片 150 mg 薄膜包衣片含 303.5 mg 乳糖、3.7 mg Allura Red AC 铝色淀和 0.84 mg 大豆卵磷脂。有关辅料的完整列表,请参阅 6.1 节。 3. 药物形式 薄膜包衣片(片剂)。 Evrenzo 20 mg 片剂 红色、椭圆形片剂(约 8 mm × 4 mm),一面压印“20”。 Evrenzo 50 mg 片剂 红色、椭圆形片剂(约 11 mm × 6 mm),一面压印“50”。
高度集成的可拉伸电子产品的发展需要开发可扩展的(亚)微米导体图案。共晶镓铟 (EGaIn) 是一种适用于可拉伸电子产品的导体,因为其液态金属特性使其在变形时具有高电导率。然而,它的高表面能使其以亚微米分辨率进行图案化具有挑战性。在此,我们通过首次报道 EGaIn 的电沉积克服了这一限制。我们使用一种非水基乙腈电解质,该电解质具有高电化学稳定性和化学正交性。电沉积材料可产生低电阻线,在(重复)拉伸至 100% 应变时仍保持稳定。由于电沉积受益于用于图案化基底金属的成熟纳米制造方法的分辨率,因此提出的“自下而上”方法通过在纳米压印预图案化的金种子层上进行电镀,在弹性体基板上实现了 300 nm 半间距的 EGaIn 规则线的创纪录高密度集成。此外,通过填充高纵横比通孔,实现了垂直集成。该功能通过制造全向可拉伸的 3D 电子电路概念化,并展示了用于制造微芯片互连的稳定镶嵌工艺的软电子模拟。总体而言,这项工作提出了一种简单的方法来解决高度集成 (3D) 可拉伸电子产品中的金属化挑战。
摘要 为了将利用电子束光刻技术制作的抗蚀剂图案应用于纳米压印模具,不仅需要考虑从曝光顶面二维观察到的线宽和孔径,还需要考虑包括抗蚀剂横截面形状在内的三维情况。在本研究中,我们关注图案内部的剂量分布和显影时间,并研究它们对抗蚀剂横截面形状的影响。采用曝光方法制作线宽为 100nm 的抗蚀剂图案,其中一条线内的总剂量相同,但一条线内的电子束扫描位置和次数会发生变化。通过电子散射模拟分析的剂量分布与解析后的图案侧壁形状之间的比较结果表明,在特定条件下,剂量分布和实际的抗蚀剂形状在 ±5nm 精度内相互一致。结果表明,即使整个图案的平均剂量相同,抗蚀剂侧壁的实际形状也会因取决于扫描位置和扫描次数的抗蚀剂中的局部剂量分布而改变。此外,我们通过观察不同显影时间下曝光后的抗蚀剂的显影过程,研究了抗蚀剂的分辨机理。结果表明,图案内部剂量的差异引起的显影速度差异对抗蚀剂的截面形状产生影响。本研究结果表明,抗蚀剂内部剂量分布和由此引起的显影速度差异对抗蚀剂截面形状有显著影响,这些参数有望在未来应用于所需截面形状的制作。
摘要:现代高通量纳米图案化技术(如纳米压印光刻技术)使得在大面积基底(cm 2 至 m 2 规模)上制造纳米结构阵列(尺寸为 10 至 100 纳米的特征)成为可能,例如硅晶片、玻璃片和柔性卷对卷网。制造这种大面积纳米结构阵列 (LNA) 的能力创造了广阔的设计空间,实现了广泛的应用,包括光学设备(例如线栅偏振器、透明导体、彩色滤光片和抗反射表面)以及电子元件的构建块(例如超级电容器、传感器和存储器架构)。然而,现有的计量方法将难以与制造方法一起扩展。例如,扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 具有微米级视场 (FOV),这妨碍了对以每分钟平方米的速度制造的 LNA 进行全面特性分析。散射测量方法具有更大的 FOV(通常为几百微米到几毫米),但传统散射测量系统一次只测量一个点的样品,这也使得它们对于大规模 LNA 制造来说太慢。在这项工作中,我们展示了使用高光谱成像对传统光谱散射测量方法进行并行化,将该技术的吞吐量提高了 106-107 倍。我们通过使用高光谱成像和反射光谱的逆向建模来展示这种方法,以微米级空间分辨率获得毫米和厘米级 Si 纳米柱阵列结构的三维几何数据。这项工作表明,可以对各种 LNA 进行几何测量,并有可能在大面积上实现高速测量,这对于未来的 LNA 制造至关重要。
产品特性总结 1. 药品名称 埃索美拉唑 Sandoz 20 mg 口服片剂 埃索美拉唑 Sandoz 40 mg 口服片剂 2. 定性和定量组成 每片 20 mg 肠溶片含有埃索美拉唑镁三水合物,相当于 20 mg 埃索美拉唑。 每片 40 mg 肠溶片含有埃索美拉唑镁三水合物,相当于 40 mg 埃索美拉唑。 已知作用的辅料 20 mg:每片肠溶片最多含 14 mg 蔗糖和 55 mg 乳糖。 40 mg:每片肠溶片最多含 28 mg 蔗糖和 111 mg 乳糖。 有关辅料的完整列表,请参阅第 6.1 节。 3. 药物形式 肠溶片。 20 毫克:浅粉色、椭圆形、双凸薄膜包衣片,尺寸约为 14x7 毫米,一面压印有“E2”。40 毫克:粉红色、椭圆形、双凸薄膜包衣片,尺寸约为 16x8 毫米,一面压印“E4”。4. 临床特点 4.1 治疗适应症 片剂适用于成人:• 胃食管反流病 (GERD) • 糜烂性反流性食管炎的治疗 • 对已治愈食管炎患者的长期管理以防止复发 • 胃食管反流病 (GERD) 的对症治疗 • 与适当的抗菌治疗方案联合使用以根除幽门螺杆菌 • 治愈幽门螺杆菌相关的十二指肠溃疡 • 预防幽门螺杆菌相关溃疡患者的消化性溃疡复发 • 需要继续接受 NSAID 治疗的患者
摘要:本文,提出了仅使用办公级工具(即卷到滚动热压印)将激光生产的氧化石墨烯(RGO)在柔性聚合物上的策略首次证明其直接生物电动分析的有效性。这种直接,可扩展和低成本的方法使我们能够克服生物分析设备中激光诱导的RGO膜的整合的极限。激光生产的RGO已使用简单的滚动层型(PET,PVC和EVA)热压到不同的聚合物底物(PET,PVC和EVA);通过形态化学和电化学表征将获得的TS-RGO膜与本机RGO(未转移)进行了比较。尤其是,已经研究了酶对催化过程的影响,研究了果糖脱氢酶(FDH)和TS-RGO传感器之间的直接电子转移(DET)反应。在TS-RGO传感器之间观察到了显着的差异。事实证明,PET是支持激光诱导的RGO转移的选择性底物,从而保留了天然材料的形态化学特征并返回降低的电容电流。值得注意的是,TS-RGO使用非常低量的FDH单元(15 MU)确保上催化性。最终,通过低成本台式技术制造了基于TS-RGO的第三代完整酶传感器。ts -rgo PET表现出比天然RGO优于的生物分析性能,使得敏感(0.0289μa cm -2μm -1 -m -1)且可重现(RSD = 3%,n = 3)D-在纳米摩尔水平下确定果糖(LOD =0.2μm)。ts-rgo的利用性作为一个需要的设备证明了 ts-rgo的可利用性。 关键字:减少氧化石墨烯,CO 2-激光器,生物催化,柔性生物传感器,纳米材料导电膜,电化学生物传感器ts-rgo的可利用性。关键字:减少氧化石墨烯,CO 2-激光器,生物催化,柔性生物传感器,纳米材料导电膜,电化学生物传感器
由于其电导率的微调,这些聚合物已成为设计微电子局部电活性模式的一种替代方案。 [12,13] 在这种情况下,通常使用不同的制造技术,例如注射打印、光热图案化、3D 打印和压印,以及电子束或紫外光刻,[14–21] 例如,在聚吡咯和聚(3,4-乙烯二氧噻吩)/聚苯乙烯磺酸盐基底上产生明确的导电图案。 [16,20] 然而,人们非常需要用于导电基底局部图案化的低成本和直接的方法。 在这种情况下,双极电化学 (BE) 被认为是一种有趣的替代方法,用于局部改性导电物体。 [22–27] 该概念基于由于外部电场 (ε) 的存在而导致的导电基底的不对称极化。在这种条件下,在暴露于电解质溶液中的ε 的物体双极电极 (BPE) 的每个末端都会产生极化电位差 (ΔV)。在存在电活性物质的情况下,仅当ΔV 超过热力学阈值电位 (ΔVmin) 时,BPE 的两端才会发生氧化还原反应。这一概念已用于不对称生成图案化梯度,范围从材料的化学组成到润湿性。[28–33] 近年来,该方法还被用于通过双极电解胶束破坏或电接枝来产生有机薄膜梯度。[34–36] 一种有前途的替代方法是利用导电聚合物有效的绝缘体/导体转变来产生不对称的充电/放电梯度。[37] 例如,Inagi 等人。已经利用这一概念,使用 U 型双极电化学电池在不同的 π 共轭聚合物(如聚苯胺、聚-3,4-二氧噻吩、聚-3-甲基噻吩和共聚(9-芴醇)-(9,9-二辛基芴))中诱导导电模式。[38–41] 此外,已经证明,通过使用复杂的双极电化学装置,可以产生陡峭的局部掺杂梯度。[42] 在此,我们利用双极电化学方法,在掺杂有十二烷基苯磺酸根阴离子(DBS)的柔性独立聚吡咯条(Ppy)上产生局部电阻梯度。之前已有报道通过双极电化学对导电聚合物进行不对称改性,但主要集中在光学跃迁(颜色变化)上。由于对于导电聚合物,电导率
石墨烯的生产是在金属基底上用化学气相沉积 (CVD) 方法进行的,因为该方法可重复、可扩展,且能获得具有大畴尺寸的高质量层。到目前为止,各种过渡金属已作为基底进行了测试 [4–10],其中铜箔由于碳溶解度低,已被证明是控制单层和双层生长的合适基底。[11–14] 通常,铜箔上石墨烯畴的成核以随机取向发生,从而形成多晶单层石墨烯片 [15] 甚至扭曲的双层石墨烯。[16] 相邻畴合并后会引入晶界,从而限制载流子迁移率。[17] 使用六边形 Cu(111) 表面作为基底,结果表明石墨烯成核发生在与基底晶格对准的位置,从而有效减少晶界。 [18,19] 在实际应用中,需要将石墨烯从金属基底转移到非金属目标基底(如 SiO 2 、SiC)。在许多情况下,转移层的质量不如原生石墨烯。众所周知,基底的选择可能会影响石墨烯的特性。[20–22] 一方面,Kraus 等人早些时候提出,铜基底的刻面可能会压印在石墨烯上,即使在平坦的基底上,转移后也会导致层起波纹。[23] 另一方面,研究表明,在 SiO 2 上转移的单晶石墨烯中的纳米波纹会降低电子迁移率。[24] 此外,在 Bernal 堆叠双层石墨烯中,在不同基底上都观察到了应变诱导的位错线[25–27],这可能会限制载流子迁移率。即使在目标基底上转移后,这些位错也可能存在。了解这些位错的形成和生长衬底的影响将为设计双层石墨烯和其他堆叠二维材料的特性开辟一条道路。我们利用低能电子显微镜 (LEEM) 和衍射 (LEED) 研究了在 Cu(111) 衬底上以及转移到外延缓冲层后 CVD 生长的石墨烯的厚度和晶体度。我们发现,在石墨烯生长过程中,衬底表面会重新构建为小平面,即使在单层石墨烯中也会留下波纹结构。LEEM 暗场测量揭示了衬底小平面在双层(和三层)石墨烯中堆叠域形成过程中的作用,这些堆叠域在转移过程中得以保留。
近年来,超连续光源和各种新型光纤或波导的超高灵敏度得到了广泛的研究,结合光纤低损耗传输、抗电磁干扰等独特性能,发展了各种光子调制和集成的全光传感器件,为平面波导与光纤波导的集成提供了可能的技术途径( Kosiel et al.,2018 )。得益于新型智能材料、纳米加工技术和光谱分析技术的发展,人们开发了许多智能、高性能的光波导器件或光纤传感器,其中,智能聚合物、金属、金属氧化物和半导体材料已被用于制作光纤传感器或作为敏感材料,有效提高了灵敏度和选择性能( Yuan et al.,2019 )。这一改进是通过修改不同的光纤结构实现的,例如微光纤、纳米光纤、光纤尖端微/纳米结构、多模干涉光纤结构和直列光纤结构。微/纳米尺度的光纤传感器已经与微流控器件和平面光子结构集成以开发全光学芯片,从而实现传感信号的高速采集、传输和处理。由于光纤传感器被封装在柔性材料中,它们将成为可穿戴或植入式设备的有希望的候选者。将微/纳米纤维的优异性能(超高倏逝场)与这些传感器中使用的新型纳米材料(高比表面积和催化活性)相结合,开发出许多性能优异的集成光学传感器。在本研究主题中,报道了基于新型智能材料的光纤传感器的结构设计、器件制备和传感性能优化的模型模拟和实验研究的最新研究工作。光学微纳光纤和微纳结构的灵活设计与精确控制是发展先进光子器件和新型传感器的重要支撑,也被称作“光纤实验室”( Zhou et al., 2019 )。廖博士等在题为“双光子聚合诱导的光纤集成功能微纳结构”的论文中回顾和讨论了近10年来双光子聚合诱导的光纤集成微纳结构领域的研究进展。利用激光微加工、聚焦离子束铣削和纳米压印技术,在光纤端面制作出超小型、微型微光学元件、光波导器件和光学微腔,分辨率小于100纳米。将“双光子聚合”技术与新的加工方法或材料相结合,新的功能结构一直致力于开发新型纳米光子学设备,例如光纤实验室。
研究与专业经历 Giuseppe Valerio Bianco 于 2006 年以满分 (110/110) 优异成绩获得意大利巴里大学化学系“化学”荣誉学位,并于 2010 年获得巴里大学“创新材料化学”博士学位。他曾在微电子与微系统研究所 (CNR-IMM, Lecce Unit) 担任研究员两年 (2010-2012),并在无机方法与等离子体研究所 (CNR-IMIP, Bari Unit) 担任研究员三年 (2012-2014)。自 2015 年起,他一直在 CNR-NANOTEC 纳米技术研究所担任研究科学家。 对科学的贡献 他的主要科学活动和专业知识,由 55 篇国际期刊出版物 (h-index=19, SCOPUS)、n 证明。 1 项专利、23 篇会议论文集和 60 多篇会议论文(亦受邀),包括:(1) 用于合成 1D(半导体纳米线)、2D(石墨烯和过渡金属二硫属化物)和 3D(金属纳米颗粒)纳米结构材料的 CVD、等离子增强 CVD 和 PVD 方法;(2) 用于材料和纳米材料表面化学处理的湿法和等离子工艺。他是 CNR-Graphene Factory 门户网站普利亚石墨烯实验室部门的科学负责人,该门户网站负责传播石墨烯和二维材料的研究。正在进行的研究项目 2020 年“GRA4TEC,用于技术应用的石墨烯”,由华为技术有限公司(加拿大)资助。职位:首席研究员(PI);2020 年“GraFoMi,用于光子和微波器件的工程石墨烯”,由巴里理工大学资助。角色:首席研究员 (PI);2020 年“PHEMTRONICS,主动光学相变等离子体跨维度系统,实现飞焦耳和飞秒超宽带自适应可重构设备”,由 H2020-EU.1.2.1 资助。角色:共同 PI。已完成的研究项目 2019-2020 年“COPPER”由混合和有机太阳能中心 (CHOSE,意大利罗马) 资助,用于将大面积 CVD 石墨烯用作有机光伏器件中的透明导电层。 2018-2019 “用于屏蔽和光束控制的光学透明和可重构微波设备”,由美国陆军 RDECOM 资助,contratto W911NF-18-1-0263,角色:Co-PI;2016-2018 “TWINFUSYON,用于提高光电生物传感多功能纳米系统研究能力的孪生”,由 EC H2020-TWINN-2015(692034)资助。角色:研究团队成员;2013-2016 “MEM4WIN,用于零能耗建筑的先进、可调节和经济实惠的四层玻璃窗的超薄玻璃膜”,由 EC FP7-2012-NMP-ENV- ENERGY-ICT-EeB(314578)资助。角色:研究团队成员;2010-2013 “SENS&MICROLAB,创新传感器和普利亚大区资助的“航空微系统”项目(POFESR 2007-2013)。角色:研究团队成员;2010-2012“NIM-NIL,通过纳米压印光刻技术大面积制造 3D 负折射率超材料”由 EC-FP7-NMP-2008-SMALL-2-228637 资助。角色:研究团队成员;2008-2010 “NANOCHARM,利用椭圆偏振和偏振技术进行多功能纳米材料表征”由 EC FP7-NMP-2007-CSA-1 (218570) 资助。角色:研究团队成员。