•无法解释的崩溃,意识的丧失,即晕厥的发作,没有明显的医学解释。昏昏欲睡或由于心率缓慢而被认为是高风险的标志。突然没有警告的情况更可疑。•一级亲戚(父母,兄弟姐妹或孩子)的SCD历史。一棵家谱将被起草,亲戚在年轻时突然死亡。这有时会受到缺乏信息的限制。•心律监测过程中心律不齐的短发作。大多数患者不知道这些,但它们是风险的标志,尤其是在年轻患者或运动过程中。•超声心动图中看到的心脏主泵室的极端增厚。有时可能需要进行心脏的磁共振扫描(MRI)。
健康的心脏主要依赖于脂肪酸β氧化(FAO),利用循环的游离脂肪酸(FFA)或脂蛋白衍生的三酰基甘油(50%–70%–70%的ATP重新质量),但也会消耗碳水化合物(Glucose)(Glucose)(Glucose)(Glucose)(Glucose)(glactate),lactate,nactate,分支机构酸氨基酸。1这种代谢灵活性使心脏能够满足生理功能。在心脏病中破坏了细胞能量代谢和收缩性能之间的平衡。患有晚期慢性心力衰竭(HF)的个体,表现出降低的心脏高能磷酸盐(绝对心脏[ATP]降低30%),2在动物HF模型中得到复制。3心肌磷酸肌酸:ATP比(心脏生物能状态的指数)与HF严重程度相关,并强烈预测凡人。4这样的观察结果突出了心脏互动能量代谢中失败的心脏5和心脏扰动的能量消耗状态。对心肌失败的研究表明取代代谢重新配置包括:增加活性氧产生,6种底物利用率从FFA转移到葡萄糖,7 FAO下调,8 AN
这是一种高度可治疗的疾病,发病率和死亡率较低。从药理学人物到介入疗法的过渡已使死亡率从目前的6%/y降低到10倍以上(95%生存10年)。选择性替代性经皮饮酒消融对手术,外科膜肌瘤切除术,栓塞药的药理学前的培养和心房颤动的减少在改善生活质量方面取得了重大进展[4]。除了可以预测猝死的风险分层算法外,预防性植入式除颤器还可以预防。然而,在HCM数量巨大的国家中,更多地接受和实施了由社会,文化和资源障碍所掩盖的国家,对于满足未满足的需求和重大挑战至关重要[5]。此外,正在开发的新型治疗方法旨在预防和延迟疾病的发作,这是在突变携带者患者中治疗的主要目标[5]。
1东田纳西州立大学詹姆斯·H·奎伦医学院,美国田纳西州约翰逊市2 Ballad Health CVA心脏研究所,田纳西州约翰逊市,美国田纳西州约翰逊市,通讯作者:Ashwin Jagadish,东田纳西州立大学詹姆斯·H·Quillen医学院医学生James H. Quillen医学院修订:12/12/2023接受:12/21/2023发布:12/31/2023 AM J Hosp Med Oct; 7(4):2023。doi:https://doi.org/10.24150/ajhm/2024.004关键词:动脉瘤,血栓,超声心动图,抗凝性,抗癌性心理性心理性心理中性疗法抽象中性障碍左心室(LV)超常见的形式不常见的形式(HC)。它与顶端动脉瘤,心律不齐和心脏猝死有关。顶端动脉瘤可以导致血栓发展,并且患有这种情况的个体可能需要抗凝。我们的病例涉及一名具有HCM的76岁女性,这些女性患有障碍物和LV顶端动脉瘤形成中腔中液脂肥大。她在动脉瘤中形成了一个血栓,该血栓已成功地用口服apixaban处理。引言虽然肥厚性心肌病可以在左心室(LV)壁中的任何地方都表现出来,但最常见的表现涉及基底前隔膜或前自由壁的肥大[1]。一种罕见类型的肥厚性心肌病(HCM)可以作为中腔LV阻塞[2]。中腔lv阻塞
Identification of Hypertrophic Cardiomyopathy on Electrocardiographic Images with Deep Learning Veer Sangha BS 1,2* , Lovedeep Singh Dhingra MBBS 1* , Evangelos Oikonomou MD, DPhil 1 , Arya Aminorroaya MD, MPH 1 , Nikhil V Sikand MD, FACC 1 , Sounok Sen MD 1 , Harlan M Krumholz MD, SM 1,3,Rohan Khera MD,MS 1,3,4 1心血管医学部,YALE医学院,YALE医学院,美国康涅狄格州纽黑文市耶鲁大学医学院2,美国2号工程科学系,牛津大学,英国牛津大学3 3号牛津大学研究与评估中心(Core)研究与评估中心(Core),耶鲁纽黑文医院,纽黑文,美国纽约市,美国公共组织4.纽黑文医院4. *作为联合第一作者
肥厚性心肌病(HCM)中的抽象目标观察到了特定的心电图异常。因此,ECG是一种有价值的筛选工具。尽管有几项研究报告了从心电图发现估计致命心律不齐的风险,但尚未确定使用ECG来识别心力衰竭的严重程度(HF)通过应用深度学习(DL)方法尚未确定。我们评估了数据驱动的机器学习方法是否可以有效地识别HCM患者的HF严重程度。使用来自218例HCM患者和245例非HCM患者的12个铅ECG数据开发了一个基于神经网络的模型,将其分为两种(轻度至中度和重度)或三个(轻度,中度和重度)HF的HF。根据纽约心脏协会的功能类别定义了这些严重程度,以及脑纳替肽的N末端激素的水平。此外,根据堪萨斯城心肌病问卷(KCCQ)-12,将患者分为组。采用了一种转移学习方法来解决目标样本数量少的问题。使用PTB-XL提前训练该模型,PTB-XL是一个开放的ECG数据集。结果,使用我们的数据集训练的模型获得了温和的平均F1得分为0.745,而轻度至中度类样品的型号为0.745,精度为0.750。基于KCCQ-12的分组获得了相似的结果。结论我们使用具有12个铅ECG数据的深神经网络算法开发了用于HCM患者HF严重程度的模型。通过使用引导梯度加权级激活图和集成梯度的数据分析,QRS波在真实阳性的轻度至中度类别的情况下强烈强调,而突出显示的部分在真实正面的严重类别的案例中是高度可变的。我们的发现表明,该DL算法在使用12个铅ECG数据中的应用可能对HCM患者的HF状态分类很有用。
肌节蛋白基因中的创始人变体占肥厚性心肌病(HCM)患者的疾病的相当比例。然而,有关非sarcomeric蛋白基因中的创始人变体的信息,例如最近才与HCM相关的FHOD3,仍然很少。在这项研究中,我们对134个概率的外显子组测序数据进行了复古分析,该数据具有HCM的复发性病原变体。我们发现了一种新型的病原变体C.1646+2T> C中的FHOD3中的杂合状态中的八个Proband中的杂合状态,并证实了其在七个添加亲戚中的存在。患有这种变体的人在疾病发作时具有广泛的年龄(4-63岁)。未观察到不良心脏事件。单倍型分析表明,具有这种变体的个体在周围具有大约5 Mbp的基因组区域,证实了变体的创始人效应。fhod3 c.1646+2t> c估计在居住在巴尔干地区的一个共同祖先中,在58代(95%CI:45-81)中出现。创始人FHOD3 c.1646+2t> c变体是我们同类HCM患者的第二大常见遗传变异,发生在16%的患有HCM的遗传原因的概率中,该概率比当前估计的0.5-2%的Causal FHOD3变量的比例高。我们的研究扩大了对HCM遗传原因的理解,并可能改善了这种情况的诊断,尤其是在巴尔干的患者中。
抽象客观心力衰竭(HF)是肥厚性心肌病(HCM)最常见和生活方式限制的并发症之一。仅使用临床措施预测HF恶化仍然有限。此外,尚未阐明HC患者患有HF的患者的机制。因此,这项研究的目的是开发基于等离子体蛋白质组学的模型,以预测HCM患者的HF恶化,并确定随后导致HF恶化恶化的人对受差异调节的信号传导途径。方法。开发了一种基于蛋白质组学的随机森林模型,以使用一个机构的数据预测HF恶化(训练集,n = 268)。该模型在不同机构的患者中得到了外部验证(测试集,n = 121)。使用错误发现率(FDR)阈值<0.001的蛋白质与未执行的患者相比,随后发育恶化的患者的蛋白质分析显着失调。使用从训练组得出的11蛋白质组学模型的结果,在测试集中,接收器操作特征曲线下的区域预测HF恶化的HF为0.87(95%CI:0.76至0.98)。途径分析表明,在随后导致HF恶化恶化的患者中,RAS-MAPK途径(FDR <0.00001)和相关途径失调。结论本研究以全面的等离子体蛋白质组学分析表明,可以预测HCM患者的HF恶化,并确定RAS-MAPK和相关信号通路是潜在的潜在机制。
缩写:4 级和 5 级、“假正常”和“限制性”左心室充盈;d、舒张末期测量;E、早期二尖瓣峰值速度;E:A、E 与晚期二尖瓣峰值速度(A)之比;E:E 0 、E 与E 0 之比;E 0 、舒张早期通过组织多普勒成像测得的二尖瓣外侧环峰值速度;HR、心率;IVRT、等容舒张时间;IVS、室间隔尺寸;LAD、与二尖瓣平面平行测量的最大左心房头尾尺寸;LVFW、左心室游离壁尺寸;LVID、左心室尺寸;LVOT、左心室流出道阻塞;RR、呼吸频率;s、收缩末期测量S 0 ,收缩期组织多普勒成像测量的二尖瓣侧环峰值速度;SF,左心室缩短分数。a 由连续波多普勒超声心动图测定,定义为 LVOT 收缩压梯度≥30 毫米汞柱。b 由于数据缺失或充盈波融合;显示绝对和相对频率以及平均值和标准偏差。治疗组间任何变量均无差异(所有 P > .05)。
摘要:肥厚性心肌病(HCM)是年轻人最常见的遗传性心脏病,也是心脏突然死亡的主要原因。在编码心脏肉瘤的结构蛋白的基因中是HCM的遗传原因。这种疾病的特征是心肌细胞肥大和心肌纤维化,该疾病被定义为心肌中细胞外基质蛋白(主要是胶原蛋白I和III)的过度沉积。心脏中纤维组织的发展对心脏功能产生不利影响。在这篇综述中,我们讨论了有关如何促进心脏纤维化的最新证据,心脏纤维细胞的作用,它们与心肌细胞的相互作用以及通过TGF-β途径激活,这是主要的细胞内信号通路调节细胞外基质离职率。最后,我们总结了HCM病理生理学中涉及的蛋白基因以及遗传和非遗传因素的新发现。