光学时钟需要更稳定的光学振荡器来加速 SI 秒的重新定义,为计量学带来出色的基础科学,并为基于时钟的大地测量学中的创新传感器提供应用。该项目的总体目标是实现利用量子技术的新一代超稳定光学振荡器。这意味着从量子光学和量子计算到光频率计量领域的理论和实验量子操控知识转移。虽然通过多粒子和光物质相互作用在原子钟和传感器中应用量子测量策略尚处于原理验证阶段,但该项目将实施并进一步开发与计量相关的光学时钟的最先进的量子测量策略。它将影响冷原子系统和光学设备的计量和传感,以及可扩展量子信息处理和模拟中使用的技术。需要
量子逻辑光谱 (QLS) 可用于缺乏合适电子能级结构来直接执行这些任务的原子和分子离子种类的内部状态制备和读出[1 – 4] 。原则上,通过使用“逻辑离子”(LI) 及其与共捕获的“光谱离子”(SI) 的运动耦合,QLS 可以控制任何离子种类。如参考文献 [1] 中所述,传统 QLS 协议有两个主要局限性。首先,它要求将离子冷却到接近运动基态。其次,它的读出效率与 SI 的数量不成比例,这可能会阻碍实现将量子逻辑原子钟扩展到多个离子所带来的更高的稳定性 [5] 。已经开发出使用重复量子非破坏 (QND) 测量来减轻这些影响的方法 [6 – 8] 。然而,由于电子结构不合适,应用它们可能不可行,重复测量会降低光谱探针的占空比。这里,我们演示了文献 [9] 中基于几何相位门提出的 QLS 方法
光学频率梳是精密计量实验必不可少的工具,其应用范围从痕量气体的远程光谱传感到光学原子钟的表征和比较,以实现精密计时,以及探索标准模型以外的物理现象。本文介绍了基于自由空间激光器和 Er/Yb 共掺杂玻璃增益介质的电信波段自锁模频率梳的架构和完整特性。该激光器为基于 Er:光纤激光器的频率梳提供了一种强大且经济高效的替代方案,同时提供与 Ti:蓝宝石激光系统类似的稳定性和噪声性能。最后,使用两个超稳定的 1157 nm 和 1070 nm 光学参考进行高稳定性频率合成,并通过将这些参考划分到微波域来产生低噪声光子微波,证明了 Er/Yb:玻璃频率梳的实用性。
约瑟夫森效应彻底改变了电压计量学 [ 1 – 5 ],它与用于测量电阻的量子霍尔效应以及用于测量时间和频率的原子钟一起,使得基于量子效应的测量标准成为可能。量子标准 7 产生的值本质上是准确的,因此可以使用可比较的设备、系统和测量技术在任何位置进行可重复的精密测量 8。量子标准本质上不同于非量子的“人工”标准 10,后者的值取决于环境条件。量子标准 11 的成功促使国际社会重新定义国际单位制,并 12 重新定义如何通过基本常数分配测量不确定度。[ 6 – 8 ] 在本章中,我将讨论直流和交流量子电压 14 标准的特性和特点、电压标准系统的设备、电路和仪器 15 的最新技术,以及它们目前如何应用于电压和 16 温度计量学。自始至终,我将指出如何采用适当的测量技术来最大限度地减少系统误差并实现接近量子精度的测量。
具有高光谱纯度的激光器可以实现多种应用空间,包括精密光谱、相干高速通信、物理传感和量子系统操控。目前,精心设计和构建的台式法布里-珀罗腔已经在主动激光线宽减小方面取得了显著成就,主要用于光学原子钟。然而,对在周围环境中高性能运行的小型化激光系统的需求日益增加。这里介绍了一种紧凑而坚固的光子原子激光器,它由一个 2.5 厘米长、20 000 精细度、单片法布里-珀罗腔和一个微机械铷蒸汽室集成而成。通过利用腔的短时频率稳定性和原子的长期频率稳定性,实现了能够集成以进行扩展测量的超窄线宽激光器。具体来说,该激光器支持 20 毫秒平均时间内 1 × 10 − 13 的分数频率稳定性,7 × 10 − 13
基于光学跃迁的原子钟长期以来一直具有潜力,可以通过使用激光冷却铯原子中的射频跃迁来测量超越最新基准水平的时间和频率。研究人员已经探索了多种架构来实现这种先进的光学计时器。其中一种系统是光学晶格钟,它基于光学晶格中限制的大量超冷中性原子,具有极高的光学跃迁质量因子 [1] 。晶格钟已开发了大约十年。大量的原子数使测量能够以较低的噪声完成原子态的量子投影。在专门设计的激光势中,严格的原子限制使原子激发不受多普勒和运动效应的影响,这些效应对于未捕获的原子来说是明显的。远失谐激光势在魔法波长下工作,其中被探测电子态的光移被抵消 [2] 。在首次提出光格子钟 [3] 之后,早期演示
摘要 通过模拟对基于 2 到 20 个纠缠原子的几种时钟协议的稳定性进行了数值评估,其中包括由于经典振荡器噪声引起的退相干效应。在这种情况下,André、Sørensen 和 Lukin [PRL 92, 239801 (2004)] 提出的压缩态与基于 Ramsey 协议的非纠缠原子时钟相比,提供了更低的不稳定性。当模拟超过 15 个原子时,Bužek、Derka 和 Massar [PRL 82, 2207 (1999)] 的协议具有较低的不稳定性。对具有 2 到 8 个量子比特的最佳时钟协议进行大规模数值搜索,与 Ramsey 光谱相比,时钟稳定性有所提高,对于两个量子比特,性能超过了分析得出的协议。在模拟中,激光本振由于闪烁频率 (1/ f ) 噪声而退相干。根据量子比特的投影测量,反复校正振荡器频率,假设量子比特彼此之间不会退相干。关键词:量子计量、自旋压缩、原子钟
摘要:我们总结了在“太空冷原子”虚拟社区研讨会上关于冷原子技术现状、它们在太空部署所带来的未来科学和社会机遇以及在太空运行冷原子之前所需的发展情况的讨论。讨论的冷原子技术包括原子钟、量子重力仪和加速度计以及原子干涉仪。预期应用包括计量学、大地测量学和由于气候变化等原因的地球质量变化测量,以及等效原理测试、暗物质搜索、引力波测量和量子力学测试等基础科学实验。我们回顾了冷原子技术的现状,概述了其太空资格的要求,包括发展路径和相应的技术里程碑,并确定了可能的探路者任务,为充分利用太空冷原子的潜力铺平道路。最后,我们提出了实现这些目标的可能路线图的初稿,并提议由感兴趣的冷原子、地球观测、基础物理学和其他潜在科学用户社区以及欧空局和国家空间和研究资助机构进行讨论。
叶俊 现任职位 美国商务部国家标准与技术研究所研究员 JILA 研究员,科罗拉多大学博尔德分校 JILA 和物理系兼职教授 网址:https://jila.colorado.edu/Yelabs,电话 303-735-3171,电子邮箱 Ye@jila.colorado.edu 教育背景 科罗拉多大学物理学博士,1997 年;新墨西哥大学物理学硕士,1991 年; 1989 年,上海交通大学应用物理学学士 荣誉与奖项 2024 年,斯德哥尔摩莉泽·迈特纳杰出讲座和奖章 科睿唯安/汤森路透,高被引研究人员(前 1%),每年从 2014 年到 2023 年 上海交通大学数学与物理科学远见奖,2023 年 美国商务部金牌(光学原子钟),2022 年 美国国防部 Vannevar Bush 奖学金,2022 年 德国物理学会 (DPG) 和 OPTICA (OSA) Herbert Walther 奖,2022 年 尼尔斯·玻尔研究所荣誉勋章,2022 年 基础物理学突破奖(与 H. Katori 共享),2022 年 Julius Springer 应用物理学奖,2021 年 墨子量子奖(与 C. Caves 和 H. Katori 共享), 2020 美国物理学会(APS)诺曼·F·拉姆齐奖,2019 美国商务部金牌(原子钟网络),2019 II IEEE 拉比奖,2018 中国科学院外籍院士,2017 美国国家标准与技术研究所雅各布·拉比诺奖,2017 总统等级奖(美国),杰出,2015 美国商务部金牌(光学原子钟),2014 落基山鹰奖,2014 戈登和贝蒂·摩尔基金会研究员奖,2013 美国国家科学院院士,2011 年;澳大利亚科学院 Frew 研究员,2011 年 美国商务部金牌(超冷分子),2011 年 欧洲频率和时间论坛 (EFTF) 奖,2009 年 加州理工学院 Gordon 和 Betty Moore 杰出学者,2008 年 美国物理学会 (APS) II Rabi 奖,2007 年 德国卡尔蔡司研究奖,2007 年 美国光学学会 (OSA) William F. Meggers 奖,2006 年 美国国家标准与技术研究所 Samuel Wesley Stratton 奖,2006 年 德国亚历山大·冯·洪堡基金会 Friedrich Wilhem Bessel 研究奖,2006 年 美国光学学会研究员,2006 年 一等奖(技术创新),Amazing Light: Vision for Discovery (CH Townes),2005 年 美国物理学会研究员,2005 年 Arthur S. Flemming 奖(美国联邦政府科学类),2005美国商务部国家标准与技术研究所研究员,2004 年 总统早期职业科学家和工程师奖,2003 年《技术评论》杂志的 TR100 青年创新者,2002 年 美国商务部金奖(光频率梳),2001 年 美国国家工程院工程前沿研讨会奖,2000 年 美国光学学会(OSA)阿道夫·隆奖章,1999 年 RA 密立根奖奖学金,加州理工学院,1997 年 - 1999 年 大学奖学金,科罗拉多大学博尔德分校,1993 年 - 1994 年 银光奖(优秀本科生奖),荣誉毕业生,交通大学,1987-89 年 命名讲师和教授职位 安娜·I·麦克弗森讲座,麦吉尔大学 2025 年;亚历克斯·达尔加诺讲座,哈佛大学 2024 年;理查德·B·伯恩斯坦讲座,威斯康星大学 2023 年;汉斯·詹森讲座,海德堡大学 2023 年;杰克·穆努希安
继 Shor 开发出一种高效数字分解的量子力学算法并得到认可的潜在实际应用 [ 1 ] 之后,量子信息科学领域的活动急剧增加。目前,人们正在许多领域探索通用量子信息处理 (QIP) 的实现可能性,包括凝聚态、原子和光学系统。囚禁原子离子已被证明是一种有用的系统,可用于研究此类装置所需的元素 [ 2 ]。离子之所以具有吸引力,部分原因是基于其内部状态的量子比特也可用于原子钟,并且具有非常长的相干时间,在某些情况下超过 10 分钟 [ 3 , 4 ]。此外,由于相互的库仑排斥力,囚禁离子会自然形成空间上分离的量子比特阵列。通过使用聚焦激光束,可以实现选择性量子比特寻址、相干操作和高保真度量子比特状态读取,以及状态相关激光散射 [ 5 , 6 ]。利用这些工具,已经演示了简单的算法 [ 6 ]。然而,目前的操作保真度明显低于容错所需的保真度,而扩展到大型系统的努力才刚刚开始。解决这些问题将涉及重大的技术挑战,但很简单