继 Shor 开发出一种高效数字分解的量子力学算法并得到认可的潜在实际应用 [ 1 ] 之后,量子信息科学领域的活动急剧增加。目前,人们正在许多领域探索通用量子信息处理 (QIP) 的实现可能性,包括凝聚态、原子和光学系统。囚禁原子离子已被证明是一种有用的系统,可用于研究此类装置所需的元素 [ 2 ]。离子之所以具有吸引力,部分原因是基于其内部状态的量子比特也可用于原子钟,并且具有非常长的相干时间,在某些情况下超过 10 分钟 [ 3 , 4 ]。此外,由于相互的库仑排斥力,囚禁离子会自然形成空间上分离的量子比特阵列。通过使用聚焦激光束,可以实现选择性量子比特寻址、相干操作和高保真度量子比特状态读取,以及状态相关激光散射 [ 5 , 6 ]。利用这些工具,已经演示了简单的算法 [ 6 ]。然而,目前的操作保真度明显低于容错所需的保真度,而扩展到大型系统的努力才刚刚开始。解决这些问题将涉及重大的技术挑战,但很简单