摘要。热交换器在其使用寿命期间会受到各种环境的影响,包括加热和冷却循环、表面盐水环境和机械载荷。因此,腐蚀性能至关重要,因为材料的穿孔可能导致系统故障。钎焊轧制铝板的腐蚀行为非常重要,因为这是汽车热交换器最常见的故障模式,尤其是在汽车零件轻量化趋势日益明显的情况下。此外,固溶热处理、均质化和钎焊等热处理会改变微观结构,从而改变腐蚀行为。已经研究了均质化温度和持续时间对 AA-3xxx 铝合金微观结构的影响,但还需要更多的研究。本研究的目的是了解均质化热处理过程中的不同保持时间如何影响腐蚀行为。加速实验室腐蚀测试对于对试验材料进行排名并最终使合金符合生产条件至关重要。本研究检查了钎焊前后双层改性铝板(AA4045/3003 改性)的腐蚀行为。腐蚀扩展归因于钎焊板之间的电位差,在海水酸加速试验 (SWAAT) 和 AA4045/3003 改良钎焊板的电化学测试后,扩散区在芯材上形成电驱动穿孔。此外,SWAAT 与动电位极化测量之间的联系已经建立,这表明这些电化学方法可用于替换或加固 SWAAT,从而降低成本。
摘要:基于石墨烯的体育场形量子点(QD)的实验实现很少,并且与扫描的探针显微镜不相容。然而,这些QD中电子状态的直接可视化对于确定这些系统中量子混乱的存在至关重要。我们报告了由单层石墨烯(MLG)和双层石墨烯(BLG)组成的异质结构设备中静电定义的体育场形状QD的制造和表征。要实现体育场形状的QD,我们利用扫描隧道显微镜的尖端在支撑六角硼氮化硼中充电。体育场的可视化状态与基于紧密结合的模拟一致,但缺乏清晰的量子混乱特征。基于MLG的体育场QD中缺乏量子混乱特征归因于由于克莱因隧穿而引起的配置潜力的泄漏性质。相反,对于基于BLG的体育场QD(具有更强的配置)的量子混乱是由平滑的配置电势所阻止的,从而降低了状态之间的干扰和混合。关键字:量子点,单层石墨烯,双层石墨烯,量子混乱,STM
摘要 在过去的 10-20 年里,集成电路 (IC) 的发展发生了重大转变,传统的光刻方法在更先进节点的开发时间急剧增加,而要实现与以前相同的性能提升,成本也成倍增加。成本的增加和光刻技术的进步导致人们开始研究先进的封装技术,通过改变 IC 设计方法来实现相同的性能提升。未来先进封装技术将以更低的成本提高性能,人们将 IC 视为一个相互交织工作的组件系统,而不是单个组件。这种思维转变导致了系统级封装 (SiP)、堆叠封装 (PoP) 和扇出型晶圆级封装 (FOWLP) 等技术的出现。在实现上述技术方面发挥关键作用的一项先进封装技术是临时键合和脱键合 (TB/DB)。 TB/DB 在先进封装中发挥的关键作用在于,通过使用支撑载体晶圆,可以实现晶圆减薄、晶圆凸块、芯片堆叠和化学气相沉积/物理气相沉积 (CVD/PVD) 型工艺等背面处理。支撑载体晶圆还可以减少整个晶圆堆叠的整体翘曲,从而允许使用易翘曲的材料,例如环氧模塑料 (EMC),这在 FOWLP 应用中至关重要。要使用支撑载体晶圆,需要一种坚固的材料解决方案,以便将晶圆粘合在一起,然后在背面处理后通过热滑动、机械或激光脱粘等主要分离方法之一将其释放。Brewer Science 设计并开发了一种双层临时粘合系统。该系统由两种材料组成,一种是通常涂在设备上的热塑性层,另一种是通常涂在载体上的热固性层。为双层系统开发的材料在极高温度应用、EMC 晶圆处理和设备减薄至 20 µm 以下方面表现出色。在本文中,我们将总结它们的功能,并介绍如何通过材料设计来调整两个临时层之间的粘合力。我们还将介绍热固性层的一个新功能,该功能可以进行图案化,从而允许将图案化粘合材料用于 TB/DB 型应用。关键词临时晶圆粘合、双层系统、光图案化、热塑性材料和热固性材料
可再生能源 (RES) 的大规模接入和负荷的快速发展导致城市电网 (UPG) 频繁出现输电拥塞。输电系统运营商通常执行高压配电网 (HVDN) 重构以缓解输电拥塞。然而,由于负荷和可再生能源变化很快,HVDN 重构可能会频繁进行。这可能会造成严重的安全问题。储能系统 (ESS) 为缓解输电拥塞提供了一种有效的方法。如果储能系统安装和操作得当,只需进行少量的 HVDN 重构即可缓解 UPG 的输电拥塞。因此,本研究提出了一个用于储能系统优化配置的多阶段双层规划模型。上层模型旨在最大化 HVDN 的年综合收益,下层模型则侧重于最小化运营成本。在实际测试系统上进行的仿真结果验证了所提出的方法在缓解传输拥塞的同时具有降低投资和运营成本的巨大潜力。
摘要:研究人员可以通过研究在现实环境中运动的人类来提高大脑研究的生态效度。最近的研究表明,双层脑电图可以提高步态过程中脑电皮层记录的保真度,但目前尚不清楚这些积极结果是否可以推广到非运动范式。在我们的研究中,我们在参与者打乒乓球时用双层脑电图记录大脑活动,乒乓球是一项全身反应性运动,可以帮助研究视觉运动反馈、物体拦截和表现监控。我们用时频分析和相关头皮和参考噪声数据来表征伪影,以确定不同传感器捕获伪影的效果。正如预期的那样,单个头皮通道与噪声匹配通道时间序列的相关性高于与头部和身体加速度的相关性。然后,我们比较了使用和不使用双层噪声电极的伪影去除方法。独立成分分析将通道分成多个成分,我们根据偶极子模型的拟合并使用自动标记算法来计算高质量大脑成分的数量。我们发现使用噪声电极进行数据处理可以提供更清晰的大脑成分。这些结果推动了记录需要全身运动的人类行为中高保真大脑动态的技术方法,这将对脑科学研究大有裨益。
为提高微电网灵活资源利用率,满足不同场景下微电网的储能需求,提出一种基于双层优化的微电网集中式共享储能容量优化配置模型。首先,分析弹性微电网中共享储能与可控负荷的响应特性,设计满足多场景调节需求的集中式共享储能运行模式。然后,以集中式共享储能净收益最大为上层,以微电网内负荷支付成本最小为下层,构建双层优化配置模型。进一步采用多目标鲸鱼优化算法对双层优化模型进行求解。结果表明:通过协调微电网内可转移负荷与可削减负荷,提高共享储能利用率,共享储能可以共同满足多场景调节需求。
在本研究中,我们报告了表面改性活性炭 (AC) 的合成。活性炭的表面已使用银纳米粒子进行改性。合成过程简单、成本有效且环境友好。改性 AC 粉末已使用 X 射线衍射、扫描电子显微镜和表面积和孔径测量进行了表征。通过使用镁离子基聚合物电解质制造 EDLC 的对称配置,测试了所制备材料的电化学性能。使用循环伏安法、电化学阻抗谱和恒电流充放电技术对电池进行了测试。含有 3 wt% 银的 AC 呈现出最佳效果,比电容约为 398 F g − 1 能量密度,功率密度为 55 Wh kg − 1 和 2.4 kW kg − 1,使其成为超级电容器应用的有趣材料。
摘要:3D NAND闪存作为存储器计算的有力候选者,因其高计算效率而备受关注,其性能优于传统的冯·诺依曼体系结构。为确保3D NAND闪存真正融入存储器芯片的计算中,急需一种具有高密度和大开关电流比的候选者。本文,我们首次报道在双层Si量子点浮栅MOS结构中实现高密度多级存储的3D NAND闪存。最大的电容电压(CV)存储窗口为6.6 V,是单层nc-Si量子点器件的两倍。此外,在10 5 s的保持时间后可以保持5.5 V的稳定存储窗口。在充电过程中观察到明显的电导电压(GV)峰,进一步证实了双层Si量子点可以实现多级存储。此外,采用nc-Si浮栅的3D NAND闪存的开/关比可以达到10 4 ,表现出N型沟道耗尽工作模式的特征。经过10 5 次P/E循环后,存储窗口可以维持在3 V。在+7 V和-7 V偏压下,编程和擦除速度可以达到100 µs。我们将双层Si量子点引入3D NAND浮栅存储器,为实现存储器中的计算提供了一种新途径。
光电倍增探测器有望克服有机短波红外光电探测器的低响应度。然而,最近的光电倍增探测器通常会同时增加响应度和暗电流,从而抵消对探测率的影响。为了抑制光电倍增装置中的暗电流,我们提出了一种新的夹层结构,即一种克服信号和噪声之间权衡的 pn 结组合。与使用典型单极电荷传输材料的设备相比,我们的双层设计具有降低暗电流和出色外部量子效率的优势。我们将这种新的夹层设计融入上转换成像器中,使上转换效率和图像对比度翻倍。这种夹层可推广到不同的有机半导体,这尤其有用,因为这里的设计将适用于尚未发现的未来红外材料。
应变工程已成为一种强大的技术,可以调整二维半导体(如钼二二二硫化物)的电子和光学特性(MOS 2)。尽管几项理论作品预测双轴菌株比单轴菌株更有效,以调整MOS 2的带状结构,但文献中仍缺少直接的实验性验证。在这里,我们实施了一个简单的实验设置,该设置允许通过弯曲十字形聚合物底物施加双轴应变。我们使用该设置来研究双轴菌株对12个单层MOS 2平流的差异反射光谱的影响,以40 MEV/%和110 MeV/%的双轴张力介绍了激子特征的红移。我们还直接比较了双轴和单轴应变对同一单层MOS 2发现的效果,即双轴应变量表因子是单轴菌株1的2.3倍。