摘要 X/γ 射线在实验室天体物理和粒子物理中有许多潜在的应用。尽管已经提出了几种方法来产生具有角动量(AM)的电子、正电子和 X/γ 光子束,但产生超强明亮的 γ 射线仍然具有挑战性。本文提出了一种全光学方案来产生具有大光束角动量(BAM)、小发散度和高亮度的高能 γ 光子束。在第一阶段,强度为 10 22 W/cm 2 的圆偏振激光脉冲照射微通道靶,从通道壁拖出电子,并通过纵向电场将其加速到高能量。在此过程中,激光将其自旋角动量(SAM)转换为电子的轨道角动量(OAM)。在第二阶段,驱动脉冲被附着的扇形箔反射,从而形成涡旋激光脉冲。在第三阶段,高能电子与反射的涡旋脉冲正面碰撞,并通过非线性康普顿散射将其 AM 转移到 γ 光子。三维粒子模拟表明,γ 射线束的峰值亮度约为 10 22
负载框架负载框架是刚性构造的,具有高轴向和侧向刚度。带有多个带有反射的无反弹球螺钉组件的线性模块,带有阳极氧化铝框架结合了高性能与合并尺寸。无反冲球螺钉组件提供高负载能力,高定位精度和可重复性。它不仅在张力或压缩方向上测试,而且还通过零测试进行测试。线性模块受到耐腐蚀的钢带的保护,这些钢带易于清洁并且在高温下也具有抗性。该机器配备了乘数极限探测器,以最佳保护操作,测试样品和机器。其他负载框架有两个,一个电子和质量超负荷保护。无反弹的线性模块由数字控制,由伺服电机控制,以使其更快地和停止,最佳控制和最高精度。可以在三个位置之间轻松更改十字头位置,以扩大可用的测试空间。这些紧凑型工作站提供了力,分离或变形闭环测试。它结合了高性能与合理尺寸。
在本文中,我们考虑了在三维时空中在热量子场理论框架中获得的石墨烯的极化张量的收敛性。在过去的几年中,与石墨烯系统中Casimir力的计算以及对石墨烯片的电导率和反射的研究有关,引起了很多关注。文献中存在矛盾的陈述,尤其是关于该张量是否在三个维度上具有紫外线差异。在这里,我们使用众所周知的维数正则化方法分析了这个问题。表明,对极化张量的热校正在任何d上都是有限的,而其零温度部分的表现在d = 3和4中差异。对于d = 3,它是通过分析延续获得的,而无限期减去。对于d = 4的时空,在减去极项后发现零温度下极化张量的有限结果。我们的结果与以前对零温度和非零温度的极化张量的计算一致。这为在石墨烯和其他二维新颖材料的研究中更广泛地应用理论方法开辟了可能性。
125 磅聚能弹头 D (IR) 485 磅 220 千克 H (TV) 466 磅 211 千克 300 磅爆炸破片弹头 E (激光) 645 磅 293 千克 F、F2、G、G2 (IR) 670 磅 304 千克 J、JX、K (TV) 654 磅 297 千克 单轨发射器 LAU-117 135 磅 61 千克跟踪机载或地基激光指示器照射目标时反射的激光能量。它于 1980 年代设计,用于摧毁装甲目标和提供战线以外的近距离空中支援。它的模拟 SAL 导引头提供远程锁定、发射后不管的能力,并包含安全功能,通过长距离飞行和在失去激光指示时停用弹头来避免附带损害它在需要高可靠性和外科手术杀伤力的动态作战行动中仍然非常有效。
摘要:光学活性自旋系统与具有高协同性的光子腔耦合可产生强光-物质相互作用,这是量子网络的关键成分。然而,获得用于量子信息处理的高协同性通常需要使用光子晶体腔,而光子晶体腔从自由空间的光学访问能力较差,尤其是自旋相干控制所需的圆偏振光。在这里,我们展示了协同性高达 8 的 InAs/GaAs 量子点与制造的靶心腔的耦合,该腔提供近乎简并和高斯偏振模式以实现高效的光学访问。我们观察到量子点的自发辐射寿命短至 80 ps(约 15 个 Purcell 增强),从腔体反射的光的透明度约为 80%。利用诱导透明度进行光子切换,同时相干控制量子点自旋,可以为建立量子网络的持续努力做出贡献。
量子照明的历史始于2008年,随后进行了两条研究。作品[6,7]从量子干涉仪的角度考虑了雷达问题。然而,这些作品被认为是高度理想化的场景,并忽略了热背景的影响。由于这篇综述着重于量子雷达的实用性,因此我们将不会进一步讨论这种方法,并专注于同年塞思·劳埃德(Seth Lloyd)开创的另一种方法[8],当他研究了如何使用量子光检测量子光以弱反复反射的靶标在热背景中包定的目标[8] 1。在他的工作中,劳埃德(Lloyd)考虑了两个方案:第一次使用n个独立的单个光子询问目标区域,而第二个协议使用n个光子彼此纠缠在一起。lloyd的结果表明,在基于纠缠的协议中,对目标存在做出错误决定的概率大大低于单光子的一个。这些结果受到量子光学界的激发的欢迎,因为它们似乎表明纠缠可以彻底改变当前的雷达技术。
摘要:Callan–Giddings–Harvey–Strominger 黑洞的光谱和温度与平坦时空中的加速反射边界条件相对应。beta 系数与移动镜模型相同,其中加速度在实验室时间内呈指数增长。黑洞中心由完全反射的规律性条件建模,该条件使场模式发生红移,这是粒子产生的源头。除了计算能量通量外,我们还找到了与黑洞质量和引力模拟系统中的宇宙常数相关的相应移动镜参数。推广到任何镜像轨迹,我们推导出自力(洛伦兹-亚伯拉罕-狄拉克),一致地将其和拉莫尔功率与纠缠熵联系起来,从而引发了对信息流加速辐射的解释。将镜面自力和辐射功率施加到特定的CGHS黑洞模拟动镜上,揭示了渐近热平衡过程中视界信息的物理特性。
将海水中近表面声速3'4 (1483 m s-r) 发送到频率计数器。门周期由射频询问脉冲和声纳返回信号之间的持续时间设置。反射的声纳信号由于传播时间较长,不会影响距离测量。一对接收换能器安装在重 4 千克的特殊形状的黄铜浮标下方 [图 3(a)],并通过一段尼龙绳悬挂在海面以下约 4 米处(图 1),为浮标位置的三角测量计算提供了基线。通过比较换能器悬挂点之间测得的分离度与换能器分离的声纳距离测量值,确定此布置的基线稳定性在 * 0.1 m 以内。在典型的实验情况下,即前后基线为 15 米,到应答浮标的范围为 200 米,接收传感器的信噪比为 30 dB,通过三角测量计算和位置数据的统计处理,可以在 * 0.5 米的精度范围内确定浮标位置(第 III B 节)。
反潜战是海军最重要的任务之一。反潜战的第一步也是不可或缺的一步是探测潜艇,第二步是确定潜艇的位置,第三步是对其进行分类或识别。潜艇的探测、定位和分类主要采用水声方法,这种方法目前被认为是最有效的。水声潜艇探测方法通常分为主动和被动两类。主动方法使用潜艇反射的声信号回声,而被动方法使用潜艇发出的声信号。主动方法的优势在于可以探测到不发出任何声信号的潜艇(例如当潜艇不动时)或发出非常弱的信号(例如所谓的安静潜艇)。主要缺点是需要发射探测信号,这会暴露敌方回声测距系统的存在。被动方法使用潜艇发出的声学信号,这是一个明显的缺点;但是,它们不会暴露系统的存在。鉴于两种方法的互补优势,它们通常在潜艇探测中结合使用。
对无限层镍酸盐的研究已经揭示了一个破裂的翻译对称性,这对其根部引起了浓厚的兴趣,与超导性的关系以及与丘比特的电荷顺序的比较。在这项研究中,在无限层Prnio 2+ 𝛿薄膜上进行了谐振X射线散射测量。与PR𝑀5共振在依赖能量,温度和局部对称性的pr𝑀5共振相比,Ni𝐿3吸收边缘在Ni𝐿3吸收边缘处的超晶格反射的显着差异。这些差异指出了两个不同的电荷顺序,尽管它们具有相同的平面内波vector。鉴于在不完全降低的prnio 2+膜中观察到谐振反射,这些差异可能与多余的氧气掺杂剂有关。此外,方位角分析表明,氧配体在Ni𝐿3共振下揭示的电荷调制中可能起关键作用。