○ 相互作用区域背景:光束辐射诱导的 bkgs(相干/非相干对产生 γγ ➝ e+e- 对)、γγ → 强子和辐射巴巴(小)○ 光束效应:同步辐射(顶部占主导但可以屏蔽)、光束气体(小)等。
摘要 - 具有触发动作功能的事物(IoT)平台的信息(IoT)平台允许事件条件通过创建一系列交互来自动触发IoT设备中的操作。对手利用这种互动链将虚假事件条件注入物联网中心,从而在目标IoT设备上触发未经授权的操作以实现远程注入攻击。现有的防御机制主要集中于使用物理事件指纹对事件交易的验证,以实施安全策略以阻止不安全的事件交易。这些方法旨在提供防止注射攻击的离线防御。最新的在线防御机制提供了实时防御,但是对攻击推断对物联网网络的推断影响的可靠性限制了这些方法的概括能力。在本文中,我们提出了一个独立于平台的多代理在线防御系统,即限制,以应对运行时的远程注射攻击。限制允许国防代理在运行时介绍攻击动作,并利用强化学习来优化符合IoT网络安全要求的国防政策。实验结果表明,防御代理有效地采取了针对复杂和动态远程注射攻击的实时防御动作,并通过最小的计算开销来最大化安全增益。索引术语 - 事物的内部,触发器平台,重新注射攻击,强化学习,深度复发Q网络,多代理系统。
前药或可以激活前药的成分,特定于肿瘤。生物正交化学已成为按需前药激活的一种有希望的平台,因为它包括可以在生理条件下进行的化学反应而不会干扰生物学过程。4,5这些反应的选择性,特定城市和相当快的动力学允许精确控制非毒性前药的激活。6 - 8据报道,许多生物正交反应具有很高的选择性前药激活的潜力,例如叠氮化物和三苯基芬丁基之间的Staudinger连接,9和跨环环烯(TCO)和四嗪(TZ)之间的四津连接。10,Staudinger连接主要用于连接应用,因为其动力学相对较慢(K 2〜10-3 m-1 s-1),并且少量报告揭示了其前药激活的潜力。11 - 13在低浓度下,四嗪连接以其快速点击释放反应动力学(K 2〜10 4 m-1 s-1)而闻名,许多报告表明,TZ部分的反应性,
异常检测(AD)代表了一种从根本上进行数据驱动发现的新工具。最初的努力集中在将强大的离线算法调整到这些高通量流系统中,但这种算法应如何适应不断发展的检测器条件的问题仍然是一个重大挑战。在这项工作中,我们引入了一个模块化生态系统,以制定和评估自主发现的策略,其中包含了不同的组件,包括:具有时间依赖性效果的数据集,复杂的触发菜单,实时控制机制和成本感知的优化标准。我们通过使用公共CMS数据集的AD触发器进行了基于强化学习的新基准来说明这一框架,旨在鼓励以社区为导向的发展发展新一代智能和适应性触发器。
CAN SIC XL物理培养基附件(PMA)Sublayer在ISO 11898-2:2024中是国际标准化的。最初,在CIA 601-4(SIC)和CIA 610-3(快速模式)文档中指定了CAN SIC XL收发器的要求,该文档已提交给ISO。NT156收发器的原型已通过CAN SIC XL收发器从Infineon,NXP和Texas Instruments在CIA CAIS CAN CAN CAN CAN CAN CAN XL Plugfest进行了成功测试。兼容性和互操作性也由沃尔芬布特尔(德国)的独立测试室C&S组测试。汽车EMC要求(IEC 62228-3)已由伊比(Ibee)在Zwickau(德国)证明。博世在去年慕尼黑(德国)的Electronica TradeShow上推出了CAN SIC XL收发器。样品将在2025年2月2日提供。根据ISO 26262(功能安全)开发芯片。根据初步数据表,NT156在隐性总线状态10 mA中以正常模式消耗,在占主导地位的总线状态54 mA中。在待机模式下,电流消耗为2 µA。用50 µs指定从备用模式到正常模式的过渡。收发器的目的是从-40°C到+150°C的连接温度。在+170°C和+200°C之间,芯片关闭,并在+150°C下释放关闭。关闭连接温度滞后是20K。最小TXD主超时为0.8 ms。芯片在V CC和V IO引脚处具有欠压检测。
电子设备的尺寸正在接近原子大小,这迫使人们制定新的指导方针来应对 22 纳米以下设计的挑战。随着芯片制造深入纳米领域,工艺变异缓解和辐射硬度成为相关的可靠性要求。受工艺变异影响的集成电路可能无法满足某些性能或功率标准,从而导致参数产量损失并需要重新设计几个步骤 [1]。传统上,软错误 (SE) 是由来自太空或地面辐射的高能粒子与硅之间的相互作用引起的 [2]。然而,技术缩放引入了电荷共享现象和脉冲猝灭 [3]。此外,工艺变异会改变线性能量传输 (LET),从而引发软错误。其后果是暂时的数据丢失,甚至在地面层面也会导致系统行为出现严重故障。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
100G 光纤 QN-UTQSP100-LR4 量子网络 100G QSFP28,1310nm,LC,LR4,SMF,10km,-5~70°C,商业级 QN-UTQSP100-SR4 量子网络 100G QSFP28,850nm,MPO,SR4,MMF,100M,-5~70°C,商业级 QN-UTQSP100-ER40 量子网络 100G QSFP28,1550nm,LC,ER,SMF,40km,-5~70°C,商业级 QN-UTQSP100-ZR80 量子网络 100G QSFP28,1550nm,LC,ZR,SMF,80km,-5~70°C,商业级40G 光纤 QN-UTSP40-LR4 量子网络 40G QSFPP (QSFP+),1310nm,LC,LR4,SMF,10km,-5~70°C,商业级 QN-UTSP40-SR4 量子网络 40G QSFPP (QSFP+),850nm,MPO,SR4,MMF,100m,-5~70°C,商业级 QN-UTSP40-ER40 量子网络 40G QSFPP (QSFP+),1550nm,LC,ER,SMF,40km,-5~70°C,商业级 QN-UTSP40-ZR80 量子网络 40G QSFPP (QSFP+),1550nm,LC,ZR,SMF,80km,-5~70°C,商业级 25G光纤 QN-UTSP28-LR 量子网络 25G SFP28,1310nm,LC,LR,SMF,10km,-5~70°C,商业级 QN-UTSP28-SR 量子网络 25G SFP28,850nm,LC,SR,MMF,100m,-5~70°C,商业级 QN-UTSP28-ER40 量子网络 25G SFP28,1550nm,LC,ER,SMF,40km,-5~70°C,商业级 QN-UTSP28-ZR80 量子网络 25G SFP28,1550nm,LC,ZR,SMF,80km,-5~70°C,商业级 10G BASE-T 铜 QN-UTSPP-10BT 量子网络10G 铜线,10GBase-T,RJ-45,UTP,100**m,-5~70°C 10G 光纤 QN-UTSPP-LR 量子网络 10G SFPP (SFP+),1310nm,LC,LR,SMF,10km,-5~70°C,无 CDR QN-UTSPP-SR 量子网络 10G SFPP (SFP+),850nm,LC,SR,MMF,300m,-5~70°C,无 CDR QN-UTSPP-ER40 量子网络 10G SFPP (SFP+),1550nm,LC,ER,SMF,40km,-5~70°C,商业级 QN-UTSPP-ZR80 量子网络 10G SFPP (SFP+), 1550nm,LC,ZR,SMF,80km,-5~70°C,商业级 1000 BASE-T 铜 QN-UTSFP-1BT 量子网络 1G 铜 SFP,1000Base-T 默认,RJ-45,UTP,100m,-5~70°C 1G 光纤 QN-UTSFP-LX 量子网络 1G SFP,1310nm,LC,LX,SMF,10km,-5~70°C,商业级 QN-UTSFP-SX 量子网络 1G SFP,850nm,LC,SX,MMF,500m,-5~70°C,商业级 QN-UTSFP-LX-BXD 量子网络 1G SFP,1490nm-TX/1310nm-RX,LC,LX,SMF,10km, -5~70°C,商业级 QN-UTSFP-LX-BXU 量子网络 1G SFP,1310nm-TX/1490nm-RX,LC,LX,SMF,10km,-5~70°C,商业级 QN-UTSFP-ER40 量子网络 1G SFP (SFP),1310nm,LC,EX 40,SMF,40km,-5~70°C,商业级 QN-UTSFP-ZR80 量子网络 1G SFP (SFP),1310nm,LC,ZX 80,SMF,80km,-5~70°C,商业级
• FMCW 收发器 – 集成 PLL、发射器、接收器、基带和 ADC – 76GHz 至 81GHz 覆盖范围,可用带宽为 5GHz – 四个接收通道 – 三个发射通道 – 基于小数 N 分频 PLL 的超精确线性调频引擎 – TX 功率:13dBm – RX 噪声系数:13dB – 1MHz 时的相位噪声:• –96dBc/Hz(76GHz 至 77GHz)• –94dBc/Hz(77GHz 至 81GHz)• 内置校准和自检 – 内置固件 (ROM) – 跨工艺和温度的自校准系统• 主机接口 – 通过 SPI 或 I2C 接口与外部处理器进行控制接口 – 通过 MIPI D-PHY 和 CSI2 v1.1 与外部处理器进行数据接口 – 用于故障报告的中断• 符合功能安全标准 – 专为功能安全应用而开发 – 提供文档以帮助 ISO 26262 功能安全系统设计达到 ASIL-D – 硬件完整性达到 ASIL-B – 安全相关认证 • 经 TUV SUD 认证,达到 ISO 26262 ASIL B 级