摘要 - 通常在临床实践中使用的心脏功能的全球单值生物标志物,例如射血分数,提供了对真实3D心脏变形过程的有限见解,因此限制了对健康和病理心脏力学的理解。在这项工作中,我们提出了点云变形网络(PCD-NET),作为一种新型的几何深度学习方法,用于模型3D心脏收缩和心脏周期的极端之间的放松。它在基于点云的深度学习中采用了最新的进步,成为编码器解码器的编码器结构,以实现有效的多尺度特征学习,直接在心脏解剖的多级3D点云表示上。我们在英国生物银行研究的10,000多个案例的大数据集上评估了我们的方法,并在基本图像获取的像素分辨率下方的预测和地面真相解剖结构之间找到平均的倒角差异。此外,我们观察到了预测和地面真理人群之间的类似临床指标,并表明PCD-NET可以成功捕获正常受试者和肌肉拨动梗塞(MI)患者之间的亚群特异性差异。然后,我们证明,在接收器操作特征曲线下,学到的3D变形模式在接收器操作特征曲线下,在Harrell的一致性INDEX进行MI生存分析方面,在接收器操作特征曲线下的面积优于13%和7%。
免疫疗法是治疗癌症的有力工具,但细胞因子和免疫剂的多效性严重限制了临床转化和安全性。为了满足这一尚未满足的需求,我们设计并表征了一种系统靶向细胞因子基因传递系统,该系统通过使用来自肿瘤靶向噬菌体的外壳蛋白对人重组腺相关病毒 DNA 进行变形衣壳化。我们发现,变形噬菌体/AAV (TPA) 颗粒比目前噬菌体衍生的载体提供更好的转基因传递,因为它能在细胞外空间更好地扩散,并改善细胞内运输。我们使用 TPA 来靶向传递编码细胞因子的转基因,用于白细胞介素 12 (IL 12 ) 以及 IL 15 和肿瘤坏死因子 α (TNF α ) 的新亚型,以进行肿瘤免疫治疗。我们的结果证明,它可以在体内对实体瘤进行选择性和有效的基因传递和免疫治疗,而不会损害健康器官。我们的变形粒子系统通过两种常用病毒的跨物种互补,为安全有效的基因传递和癌症免疫治疗提供了一种有希望的方式。
摘要 — 磁性纳米粒子 (MNP) 在许多生物医学应用中是非常有吸引力的组件,特别是作为用于靶向治疗的治疗性磁性微载体 (TMMC)。虽然可以使用外部磁场有效地收集和运输 MNP,但最佳输送方式尚未得到充分研究。在本文中,我们讨论了可变形软磁微型机器人在不同磁场条件下的建模和特性描述。所考虑的微型机器人由浸入不同载体流体中的超顺磁性氧化铁 (SPIO) 组成,并且已经在弱磁场下通过实验表征了其行为。实验结果清楚地表明,观察结果正确地遵循了模型预测。具有可控形状变形的软磁微型机器人由于其特性对环境条件(例如容器尺寸、速度、剪切应力)的适应性而具有巨大的靶向药物输送潜力。
封装脱层是半导体封装中存在的问题之一。了解特定情况下的脱层机理对于找出根本原因和实施稳健解决方案非常重要。在本研究中,进行了封装变形建模,以分析基板或封装在不同热条件下的变形。将建模结果与存在脱层问题的封装的实际封装变形进行了比较。结果发现,通过实际横截面分析观察到的变形与回流温度条件下的建模结果相符。因此,可以得出结论,脱层发生在封装回流期间,而不是在后模固化或先前工艺之后。关键词:封装脱层;变形建模;芯片粘接膜;回流;热条件。1.引言在半导体封装中,界面脱层是一个常见问题。它是不同芯片界面之间的分离
经典的金属制造和连接涉及两种不同的途径:一条基于熔化和结合;其他利用塑性变形。要用所需的几何形状制造金属组件,配偶工程师可以加热并融化金属,将其倒入具有预定层形状的模具中,然后通过冷却使其在模具中凝固。这是铸造过程[1]。替代,当金属保留在固态中时,可能会将金属按或将金属锤成所需的形状。这是锻造过程[2]。在铸造更能产生较大且复杂的形状时,宽容会导致改善的机械性能,例如更好的延展性,更高的产量和拉伸强度以及较长的疲劳寿命。加入两个金属工件,材料工程师可以使用弧[3],煤气
在本文中,我们介绍了一种新的几何深度学习模型 CorticalFlow,该模型通过给定一张三维图像来学习将参考模板变形为目标对象。为了保留模板网格的拓扑属性,我们通过一组微分同胚变换来训练我们的模型。这种新的流常微分方程 (ODE) 框架实现受益于小型 GPU 内存占用,可以生成具有数十万个顶点的曲面。为了减少由其离散分辨率引入的拓扑误差,我们推导出可改善预测三角网格流形性的数值条件。为了展示 CorticalFlow 的实用性,我们展示了它在大脑皮层表面重建这一具有挑战性的任务中的表现。与目前最先进的技术相比,CorticalFlow 可以生成更优质的曲面,同时将计算时间从 9 分半钟缩短到 1 秒。更重要的是,CorticalFlow 强制生成解剖学上合理的曲面;它的缺失一直是限制此类表面重建方法临床意义的主要障碍。
成年果蝇的抽象蘑菇体(MB)具有成千上万个肯尼因神经元的核心;早期出生的G类的轴突形成一个内侧叶,而后来出生的α'β”和αβ类形成内侧和垂直叶。幼虫仅用γ神经元孵化,并使用其γ神经元的幼虫特异性轴突分支形成垂直叶“ facsimile”。MB输入(MBIN)和输出(MBON)神经元将Kenyon神经元裂片分为离散的计算室。幼虫有10个这样的隔室,而成年人有16个。我们确定了定义10个幼虫室的32个Mbons和Mbins中的28个命运。随后将七个箱子纳入成人MB;他们的四个Mbins死亡,而12个Mbins/ Mbons重塑以在成人隔室中起作用。其余三个隔间是特定于幼虫的。在变形时,它们的MBIN/MBONS跨不同分化,将MB留给其他成人脑电路。成人垂直裂片是使用从成人特异性神经元池招募的Mbons/Mbins制成的。细胞死亡,隔室转移,跨差异和募集新神经元的结合导致没有通过变质维持幼虫mbin-mbon连接。在这个简单的层面上,我们没有发现从幼虫到成人的记忆痕迹的解剖基板。反差异神经元的成年表型代表其进化的祖先表型,而其幼虫表型是幼虫阶段的衍生象征。这些细胞主要出现在也产生永久MBIN和MBON的谱系中,这表明幼虫指定因子可以允许与出生或同胞身份相关的信息以幼虫的修改方式解释,以使这些神经元获得幼虫表型修饰。变形时这种因素的丧失允许这些神经元恢复其在成年人中的祖先功能。
a 大连理工大学数学科学学院,中国大连 b 代尔夫特理工大学精密与微系统工程系,荷兰代尔夫特 c 代尔夫特理工大学可持续设计工程系,荷兰代尔夫特
报告了用于制造液晶弹性体(LCE)晶格的集成设计,建模和多物质的3D打印平台,并报告了具有空间可编程的nematic Director订单和本地组成的均质和异质布局。根据其组成拓扑结构,这些晶格在其各自的近视转变温度上方和下方循环时表现出不同的可逆形状变形转换。此外,可以证明,在评估所有LCE晶格设计的实验观察到的变形响应与模型预测之间存在良好的一致性。最后,建立了一个反设计模型,并证明了以预测的变形行为打印LCE晶格的能力。这项工作开辟了新的途径,用于创建构建的LCE晶格,这些晶格可能会在能量散落结构,微流体泵送,机械逻辑和软机器人技术中找到潜在的应用。
摘要 - 我们提供了一个以双整合器动力学建模的移动机器人团队的编队控制器,以操纵围绕轮廓的可变形物体。操纵任务定义为达到目标配置,该目标配置由2D中的形状,比例,位置和方向组成,同时保留对象的完整性。我们提供了一组旨在允许对定义任务的变量的不耦合控制的控制器。对控制器的形式分析在与平衡状态的解耦,稳定性和收敛性方面深入覆盖。此外,我们还包括控制屏障功能,以执行与任务相关的安全限制,即碰撞和过度拉伸避免。在模拟和实际实验中说明了该方法的性能。