报告了用于制造液晶弹性体(LCE)晶格的集成设计,建模和多物质的3D打印平台,并报告了具有空间可编程的nematic Director订单和本地组成的均质和异质布局。根据其组成拓扑结构,这些晶格在其各自的近视转变温度上方和下方循环时表现出不同的可逆形状变形转换。此外,可以证明,在评估所有LCE晶格设计的实验观察到的变形响应与模型预测之间存在良好的一致性。最后,建立了一个反设计模型,并证明了以预测的变形行为打印LCE晶格的能力。这项工作开辟了新的途径,用于创建构建的LCE晶格,这些晶格可能会在能量散落结构,微流体泵送,机械逻辑和软机器人技术中找到潜在的应用。
摘要目的本研究旨在评估早期癌症治疗相关的心脏功能障碍(CTRCD)的发生率以及在蒽环类化疗期间左右心脏变形的特征。方法,我们前瞻性地招募了351名没有化学疗法的乳腺癌和心血管危险因素的队列,这些妇女计划接受蒽环类药物。左心室射血分数(LVEF),左心室全局纵向应变(LV-GLS)和右心室和右心室和左心房纵向菌株在基线时使用超声心动图,然后在后续的周期和最终的Anthracycline dose后3周之前使用超声心动图评估。ctrCD被定义为新的LVEF降低,降低了10个百分点,至LVEF <50%和/或GLS的新相对下降距基线值> 15%。结果18岁(5.1%)患者在蒽环类药物治疗期间有无症状CTRCD的证据,在完成化学疗法方案之前,有50%的患者患有CTRCD。在CTRCD组中,第一次剂量的蒽环类药物后LV-GLS显着降低,但在第二剂剂量后观察到右心室游离壁纵向应变的还原并左心房储层菌株。其他应变指数不能用于识别早期CTRCD。结论心脏毒性在开始蒽环类化疗后不久就会出现。在左心和右心脏力学中,LV-GLS仍然是检测早期CTRCD的最佳变形指标。
尽管岩石机械行为具有很长的研究记录,但试图了解裂缝在岩石变形上的作用仍然存在尚未解决的问题。由于技术和/或经济挑战,自然岩石裂纹通常是粗略地处理的,而在许多地球科学和地下工程应用中,没有详细考虑断裂几何形状和异质性。无处不在的矿物质裂缝属于该类别,在该类别中,需要持续的努力来为岩石力学和地质力学应用提供必要的信息。在本次演讲中,我将在成岩环境中介绍最小裂缝的发生和起源,以及在受限和未约束条件下含有矿化裂缝的岩石的变形特性。我还将在格拉斯哥大学和曼彻斯特大学进行简要介绍我们正在进行的信息项目,那里的重点是断裂异质性及其对地质处理核废料的含义。
摘要。在增材制造中,有必要考虑并弥补由于残余压力的作用而造成的零件翘曲。用于计算CAE系统中变形幅度的有效快速方法之一是机械有限元分析,它不需要许多迭代。要确保CAE系统中计算的准确性,必须在特殊样本上校准它们。本文提出了一种对直接金属沉积过程(DMD)过程进行校准的方法,其结果是计算DMD期间零件变形所需的内部变形值。借助Shupustancy添加剂CAE系统,设计了DMD工艺的数字模型,并模拟了残留应力的效果。基于与全尺度样本的比较结果,已经调整了计算出的参数,可将其应用于优化工件部分的几何形状,并考虑到DMD过程的特征。
摘要。无损检测 (NDT) 方法和技术在提高各行各业的产品质量方面发挥着至关重要的作用。在这些方法中,光学方法脱颖而出,它依赖于对光辐射如何与测试对象相互作用的分析。物体光学测试的关键信息参数包括其光谱和整体光度特性。这些特性受物质结构、温度、物理状态、微起伏、入射辐射角度、偏振度和波长等因素的影响。通过利用光学方法,可以在不损坏物体的情况下检测出材料内部的缺陷。这些缺陷包括空隙(不连续性)、分层、孔隙、裂纹、异物夹杂、内部应力、材料结构的改变、物理和化学性质的变化,以及与指定几何形状的偏差。值得注意的是,光学方法仅限于检测由光谱区域内透明的材料制成的产品的内部缺陷。通过利用无损光学检测的力量,行业可以确保其产品的完整性和质量,检测潜在缺陷,并保持严格的质量标准,而不会对测试对象造成任何损害。描述了使用傅里叶变换对全息图序列进行处理的方法,这些全息图被记录在不同的时间点。通过低功率激光辐射可以测量复合材料在加热时的变形。
摘要 - 我们提供了一个以双整合器动力学建模的移动机器人团队的编队控制器,以操纵围绕轮廓的可变形物体。操纵任务定义为达到目标配置,该目标配置由2D中的形状,比例,位置和方向组成,同时保留对象的完整性。我们提供了一组旨在允许对定义任务的变量的不耦合控制的控制器。对控制器的形式分析在与平衡状态的解耦,稳定性和收敛性方面深入覆盖。此外,我们还包括控制屏障功能,以执行与任务相关的安全限制,即碰撞和过度拉伸避免。在模拟和实际实验中说明了该方法的性能。
我们的边界条件以64个节点为各个粒子,将潜伏的Z𝑖连接到Z𝑗。为了计算我们从网格M𝑖切换到网状M𝑗的点,我们首先计算两个变形序列:一个从m𝑖到m𝑗,另一个M𝑗转到M𝑖。给定这两个网格序列,我们可以确定网格之间的倒角距离最小的时间𝑡∗。我们在围绕𝑡= 0的中心的变形序列的小节中找到了最佳开关点。5,即我们不采用切换点,例如,𝑡= 0。01,而是我们仅考虑[0中的𝑡值。35,0。65]。这是为了防止过度扭曲边界条件。通过扩张多线的两侧进行重新映射,以便将𝑡∗精确地映射到𝑡= 0。5。因此,所有开关点的边界都可以通过标准的Voronoi图可视化。
© A.D. Evstifeev, I.V.Smirnov,2023 年。出版商:彼得大帝圣彼得堡理工大学 这是一篇根据 CC BY-NC 4.0 许可开放获取的文章(https://creativecommons.org/li-censes/by-nc/4.0/)
金属电极诱导的晶格应变会损害用电子或孔自旋运行的高级量子设备的功能。在这里,我们通过nanobeam扫描X射线di效果显微镜很好地研究了由埋入10 nm厚的SI / SI 0.66 GE 0.34量子孔的晶状体上的CMOS制造钛电极引起的变形。我们能够测量2-8×10-4范围内的锡电极诱导的应变张量成分的局部调制,并具有约60 nm的横向分辨率。我们评估这些应变流动在局部调制中反映在SI传导带的最小值大于2 MeV的电势中,该电池的最小值大于2 MeV,该调制带接近静电量子点的轨道能。我们观察到,在量子孔层的给定深度处应变调制的符号取决于电极的横向尺寸。由于我们的工作探讨了设备几何形状对应变诱导的能量景观的影响,因此它可以进一步优化缩放CMOS加工的量子设备的设计。