表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。
摘要软计算机将需要柔软的材料,这些材料表现出丰富的功能多样性,包括形状变形和光反应。这些功能的组合可以在软计算机中有用的行为,可以通过合成表现出局部响应性的材料来进一步发展。可以通过为直接墨水写作(DIW)制定复合墨水来启用液晶弹性体(LCE)的局部响应(LCE),它们是表现出形状变形的软材料。金纳米棒(Aunrs)可以添加到LCES中,以通过局部表面等离子体共振吸收光后光热形状变化。我们比较了LCE公式,重点是DIW和Aunrs的光响应性打印。不同的三维体系结构的局部响应能力启用了可以振荡,爬网,滚动,运输质量并显示其他独特的致动和运动模式,以响应光线,从而使这些有希望的功能材料用于高级应用程序。
摘要 - 图卷积网络(GCN)最近进行了研究,以利用人体的图形拓扑用于基于骨架的动作识别。然而,不幸的是,大多数这些方法是通过动摇的各种动作样本的易加色模式汇总信息,缺乏对级别内部品种的认识和对骨架序列的适当性,这些骨骼序列通常包含冗余甚至有害连接。在本文中,我们提出了一个新型的可变形图卷积网络(DEGCN),以适应性地捕获最有用的关节。拟议的DEGC在空间图和时间图上学习了可变形的采样位置,从而使模型能够感知歧视性接受领域。值得注意的是,考虑到人类的作用本质上是连续的,相应的时间特征是在连续的潜在空间中定义的。此外,我们设计了创新的多分支框架,该框架不仅在准确性和模型大小之间进行了更好的权衡,而且还可以显着提高集合的效果。广泛的实验表明,我们提出的方法在三个广泛使用的数据集上实现了最新的性能,即NTU RGB+D,NTU RGB+D 120和NW-UCLA。
可以通过刚性纸来创建可弹性变形的材料,通过对可以局部弯曲和弯曲的适当网格进行图案。我们演示了如何使用三光束干扰光刻在大面积上制造微观模式。我们产生的网格在任何刚性材料膜中都会引起较大且可靠的弹性。微涂层微观会产生可拉伸的导电膜。当样本可逆地拉伸至30%并且没有引入重大缺陷时,电导率变化可以忽略不计,而与迅速撕裂的连续纸相比。缩放分析表明,我们的方法适合于进一步的微型化和大规模制造可拉伸功能膜。因此,它为电子,光子和传感应用中的可拉伸互连以及各种其他可变形结构打开了路线。
Ambidectionality是结构元素以两个相反方向超越参考状态的能力,在本质上很普遍。但是,除非使用复杂的混合构建体,否则常规软材料通常仅限于单个单向变形。我们利用了中间体自组装,聚合物链弹性和聚合诱导的应力的组合,以设计表现出两个中间酶的液晶弹性体:雪佛龙晶状体C(CSMC)和薄膜A(SMA)。诱导CSMC-SMA - 各向同性相跃迁导致微观结构中应变场的异常反转,从而导致相反的变形模式(例如,连续收缩或膨胀或右手或左手或左手的扭曲或相反的方向和高频率频率)和高频率的频率。这种式运动运动是可扩展的,可用于在宏观上产生高斯变换。s
摘要 — 在本文中,我们介绍了 Surf-Deformer,这是一种代码变形框架,可将自适应缺陷缓解功能无缝集成到当前的表面代码工作流程中。它根据基本规范变换设计了几种基本变形指令,这些指令可以组合起来探索比以前的方法更大的设计空间。这使得针对特定缺陷情况定制的变形过程更加优化,以最少的量子位资源更有效地恢复变形代码的 QEC 能力。此外,我们设计了一种自适应代码布局,可以适应我们的缺陷缓解策略,同时确保逻辑操作的高效执行。我们的评估表明,Surf-Deformer 的表现优于以前的方法,可将各种量子程序的端到端故障率显著降低 35 倍至 70 倍,而与以前的方法相比,仅需要约 50% 的量子位资源即可实现相同的故障率。烧蚀研究表明,Surf-Deformer 在保留 QEC 能力方面超越了以前的缺陷去除方法,并通过实现近乎最佳的吞吐量来促进表面代码通信。索引词——量子误差校正、动态缺陷
摘要。隧道内所有配备智能通风系统的主要和辅助设备都是为了确保安全而设计的。这些系统相互“对话”和“倾听”,决定打开/关闭某些系统或部分系统,并及时通知隧道运营商,隧道运营商有权对所有必要系统进行集中控制。本文使用数值模型来评估可变形元件确保隧道安全运行的效率。使用它们的理念是基于通过柔性元件人为增加隧道的气动阻力,这将阻碍燃烧产物的扩散,但不妨碍人们通过隧道的移动,并有助于隔离干净和污染的气团。这种阻力将用于迅速将隧道车道分成更小的部分,这将有助于在火灾初期尽早扑灭火灾,延长疏散时间并在无法控制的强烈火灾中挽救生命。至于紧凑型可变形元件,它可以用于运营隧道和规划隧道,因为它在实践中不会减少宝贵的地下空间的体积。
在我们最近的工作11中,我们引入了一种基于离散优化的密集图像配准方法,即带有 α 扩展的最小图割。12 其他人之前已经提出过使用最小图割进行图像配准,13、14 但由于该方法的计算成本高,在实践中采用有限。通过将图像划分为子区域,并将每个 α 扩展一次限制在一个子区域,我们能够大幅减少这种配准方法的计算时间,而质量方面仅有很小的损失。处理一个子区域涉及两个步骤:计算体素匹配标准(即构建图形)并通过求解最小图割问题执行离散优化。早期的分析实验表明,对于较小的子区域,大部分计算时间都花在计算匹配标准上,而不是执行图割优化上。当使用计算密集度更高的相似性度量(例如互相关 (CC))时,这种效果更加明显,这已被证明在图像配准中很有价值。15
表面微加工的一个成功光学应用是开发静电驱动微机械镜阵列(由可移动的反射或折射元件组成的大规模并行阵列),用于投影显示系统。1 每个元件都是一个镜面部分,可用作大型显示器中的一个像素,元件的驱动通过二进制数字控制信号并行协调。在这种系统中,已证明简单微机械致动器的制造成品率可以接近 100%。此外,已证实可以实现电子器件与微机电系统(MEMS)阵列结构的大规模集成。这种集成是通过在平面化 CMOS 电子器件阵列上构建 MEMS 结构来实现的。已提出了这些基本概念的几种扩展,以便开发用于自适应光学系统的表面微加工连续膜可变形镜。在自适应光学中,重要的是可变形镜既要连续又要精确可调。本文描述的装置是使用表面微加工技术制造的第一种连续镜。~ 体微加工连续镜之前已经展示过。2 ! 波士顿大学设计、制造和测试了表面微加工镜。该装置由单个柔性光学膜组成,该膜由多个附件支撑,这些附件位于表面法向静电致动器的底层阵列上。该装置有两个特点与以前的表面微加工镜系统不同。首先,镜面是连续的,而不是分段的。因此,致动器的局部变形会导致镜面平滑偏转,表面轮廓没有不连续性,没有由于分段边缘而导致的衍射干扰,也没有由于填充因子低于 1 而导致的光强度损失。此外,新的可变形镜装置允许精确、连续地控制镜面膜。