1血液学系,法国雷恩·雷恩斯(Chu de Rennes); 2法国雷恩斯的弗朗萨斯·杜·桑·布雷塔尼(Françaisdu Sang Bretagne); 3血液学部门,楚里昂·苏德(Chu Lyon Sud),皮埃尔·B·恩特(Pierre B´Enite),法国里昂(Lyon); 4法国蒙彼利埃的Chu de Montpellier血液学系; 5血液学系Chu de Nantes,法国南特; 6法国里尔大学血液学Chu de Lille系; 7法国Cr´Eteil的Chu Henri Mondor淋巴病恶性肿瘤血液学系; 8法国波尔多的Bordeaux血液学和细胞治疗部; 9法国图卢兹丘罗斯大学的血液学和内科系,杜型癌 - 障碍癌大学; 10 Clermont-Ferrand,Clermont-Ferrand,法国Chu de Clermont-Ferrand的血液学和细胞治疗部; 11血液学系Chru Nancy,Biopole de l'大学。 12血液学系,法国巴黎索邦大学的Saint-Antoine医院; 13法国第简的杜正孔伯戈涅血液学和INSERM 1231; 14血液学部门,HO
协变性转移是一种常见的实践现象,可以显着降低模型的准确性和公平性能。在协变量转变下确保不同敏感群体的公平性至关重要,因为诸如刑事司法等社会意义。我们在无监督的制度中运行,其中只有一组未标记的测试样本以及标记的训练集。在这种高度挑战但现实的情景下提高公平性,我们做出了三项贡献。首先是一个基于新型的复合加权熵的目标,以实现预测准确性,并通过代表匹配的损失进行了优化。我们通过实验验证,在帕累托意义上,相对于几个标准数据集的公平性 - 准确性权衡,在帕累托意义上,使用损失配方优化优于最先进的基线。我们的第二个贡献是一个新的环境,我们称之为不对称的协变量转变,据我们所知,以前尚未研究过。与其他组相比,当一个组的协变量显着转移时,发生不对称的协变量转移发生时,当一个主体群体过分代表时,就会发生这种情况。虽然这种设置对当前基线非常挑战,但我们表明我们提出的方法显着胜过它们。我们的第三个贡献是理论,我们表明我们的加权熵项以及训练集的预测损失近似于协变量下的测试损失。通过经验和正式的复杂性界限,我们表明,与看不见的测试损失的近似不取决于影响许多其他基线的重要性采样方差。
甲状腺功能减退症仍然是一个全球性问题,在成人和新生儿中发病率不断上升,表现为甲状腺分泌甲状腺激素不足导致代谢率下降 [5]。研究表明,甲状腺功能障碍超过十年的患者罹患肝细胞癌的几率显著升高 [6],NASH 和慢性乙型肝炎感染者的甲状腺功能障碍发生率高于对照组 [7]。下丘脑-垂体-甲状腺轴在许多代谢途径中起着重要作用,尤其是那些涉及脂质和碳水化合物的代谢途径。NAFLD 被描述为代谢综合征的肝脏表现。因此,长期以来,甲状腺功能减退症与 NAFLD 之间的关系一直被假设和研究 [8]。
抽象与年龄相关的黄斑变性(AMD)是发达国家不可逆失明的主要原因之一。抗血管内皮生长因子疗法已改变了新生血管AMD(NAMD)的管理和结果,尽管需要重复进行玻璃体内注射(甚至终生),以及相关的并发症,高药物成本,频繁的临床访问和重复成像以及对医疗系统的巨大负担,并导致了巨大的成像。基因治疗方法在持续递送一系列抗血管生成蛋白方面的应用有望帮助应对这些上述挑战。NAMD基因治疗的许多早期临床试验提供了令人鼓舞的结果,并进行了更多的持续或预期。仍然存在重要的争议领域,包括有关最佳治疗目标,管理途径和潜在安全问题。在这篇评论中,我们旨在提供NAMD基因疗法现状的最新状态,并简要讨论未来的前景。
摘要帕金森氏病(PD)的特征是黑质(SNC)多巴胺(DA)神经元的死亡,但在其死亡之前的病理生理机制仍然未知。PD中DA神经元的活性可能会改变,但我们对活性的慢性变化是否可能导致退化。为了解决这个问题,我们开发了一种化学遗传(Dreadd)小鼠模型,以长期增加DA神经元的活性,并使用离体电生理学证实了这种增加。DA神经元的慢性过度激活导致在光周期期间运动活性的延长,并在黑暗循环期间减少,这与DA释放和昼夜节律干扰的慢性变化一致。我们还观察到了SNC投影的早期优先退化,从而概括了SNC轴突选择性脆弱性的PD标志和腹侧段面积轴突的比较弹性。接下来是中脑DA神经元的最终丧失。连续的DREADD激活导致基线钙水平持续增加,这支持了在神经变性过程中钙增加的重要作用。最后,来自研究中脑DA神经元和纹状体靶标的无多小鼠的空间转录组学,以及与人类患者样品的交叉验证,提供了对多动症诱导的毒性和PD的潜在机制的见解。因此,我们的结果揭示了SNC DA神经元对增加神经活性的优先脆弱性,并支持增加神经活动在PD驱动变性中的潜在作用。引言帕金森氏病(PD),尼格拉(Nigra)pars commanta(SNC)多巴胺(DA)神经元的丧失导致基底神经节中电路动态的严重破坏。多巴胺损失的补偿涉及在电路中存活的SNC神经元和其他下游神经元的活性变化。的确,在大鼠骨纹状体途径的部分病变之后,存活的SNC DA神经元是多动(1),释放额外的多巴胺(2-5),并减少了多巴胺再摄取(2)。DA神经元的巨大丧失(1、6、7),线粒体复合物I活性的完全丧失以及线粒体PD蛋白PINK1(9)的损失也会导致爆发的爆发增加(10,11)。因此,在广泛的损失或压力的情况下,DA神经元易于改变活性,这可能与电路水平的变化有关。例如,灵长类动物模型的证据表明,在PD中,丘脑下核向SNC发送了谷氨酸能投射的核(12)。虽然系统级变化可能是补偿性的,并且部分恢复了多巴胺水平和整体运动功能,但它们也可能带来不利的后果。此外,包括α-突触核蛋白,LRRK2,Pink1和Parkin在内的关键PD疾病蛋白可以影响神经活动水平(13-18),进一步支持了神经活动变化也可能有助于疾病病理生理学的观念。健康的SNC多巴胺神经元由于其起搏活动,有效的Ca 2+泵送,无髓髓纤维或髓鞘不良的纤维(19、20)和大轴突轴(21),因此具有巨大的能量需求。这一巨大的能量要求可能解释了其内在脆弱性,包括线粒体损伤,包括复杂的I破坏(8、22、23)以及线粒体动力学的障碍(24)和周转率(25)。据估计,线粒体在SNC DA神经元中消耗的氧的一半致力于支持神经元释放和发射器释放(26)。因此,与疾病相关的应激结合在一起,即使是轻微多动症的代谢影响可能会触发或加速SNC DA神经元的变性。支持该假设,抑制STN的兴奋性输入可保护SNC DA神经元从6- OHDA和MPTP毒性(27,28)。
FTD 的估计患病率为 15-22/100 000,人口研究表明男女患病率相等 [3]。临床上,FTD 患者可表现为三种典型临床综合征之一:行为变异型 FTD (bvFTD) 和两种语言变异型、语义性痴呆和进行性非流利性失语症 (PNFA)(见下文)。FTD 可与运动神经元病/肌萎缩侧索硬化症 (MND/ALS) (FTD-MND)、皮层基底节综合征 (CBS) 和进行性核上性麻痹 (PSP) 综合征重叠 [4]。FTD 是一种高度遗传性疾病,约 30-50% 的病例报告有阳性家族史 [5]。三种基因的突变,即微管相关蛋白 tau ( MAPT )、前颗粒蛋白 ( GRN ) 和 9 号染色体开放阅读框 72 ( C9orf72 ) 基因,是大多数家族性病例的病因,约占所有 FTD 病例的 10-20% [5,6]。目前,FTLD 的神经病理学分类可识别出五种
抽象与年龄相关的黄斑变性(AMD)是发达国家不可逆失明的主要原因之一。抗血管内皮生长因子疗法已改变了新生血管AMD(NAMD)的管理和结果,尽管需要重复进行玻璃体内注射(甚至终生),以及相关的并发症,高药物成本,频繁的临床访问和重复成像以及对医疗系统的巨大负担,并导致了巨大的成像。基因治疗方法在持续递送一系列抗血管生成蛋白方面的应用有望帮助应对这些上述挑战。NAMD基因治疗的许多早期临床试验提供了令人鼓舞的结果,并进行了更多的持续或预期。仍然存在重要的争议领域,包括有关最佳治疗目标,管理途径和潜在安全问题。在这篇评论中,我们旨在提供NAMD基因疗法现状的最新状态,并简要讨论未来的前景。
种类,包括啮齿动物,23,27,28,30,31,38,47,50,51,57-61,人类29,36、40,46,62-64),非人类灵长类动物49,65,
释放了研究主题“大脑缺氧和缺血:对神经退行性和神经保护作用的新见解”的第一个问题,因此发表了许多研究,许多研究扩展了我们对缺氧可以发挥破坏性或保护性作用的分子机制的理解。正常的大脑发育和功能极大地取决于氧气供应及其不良效率,这是由于环境中的氧气水平降低(缺氧)或血液流量降低(缺血)可以导致神经元细胞死亡和随后的神经变性。氧的缺乏效率的影响显着,从膜脂质的组成,酶活性的变化,线粒体重塑,随后导致基因表达和转换的变化,从而显着各种细胞功能。血管健康受损和脑供应减少的大脑供应与许多神经退行性疾病的发病机理有关,包括血管性痴呆和阿尔茨海默氏病。此外,劳动力中怀孕或胎儿缺血/缺血期间的母亲缺氧在劳动力显着影响新生的大脑发育和功能方面,从而增加了以后生活中发展各种神经病理学的风险。强化研究提出了各种治疗途径,用于开发治疗方法和预防方法,以应对缺氧和缺血性损伤的病理影响,包括旨在增加大脑缺氧 - 缺血性耐受性的缺氧前和后解决方案。在COVID-19大流行后的近年来,缺氧是这种系统性疾病伴随的主要因素之一,导致患者的神经系统表现不仅
昼夜节律功能障碍是帕金森病(PD)的标志,在PD患者中已经描述了核心时钟基因BMAL1的表达降低。bmal1是核心昼夜节律函数所必需的,但也具有非节律函数。种系BMAL1缺失会导致小鼠的脑氧化应激和突触丧失,并且会加剧多巴胺能神经变性,以响应毒素MPTP。在这里,我们检查了细胞类型 - 特异性BMAL1缺失对体内多巴胺能神经元活力的影响。我们观察到,BMAL1的全球,产后缺失导致酪氨酸羟化酶 +(Th +)多巴胺能神经元的自发丧失。这不是通过光诱导的行为昼夜节律破坏来复制的,也不是由星形胶质细胞或小胶质细胞特异性BMAL1缺失引起的。然而,泛神经元或神经元特异性BMAL1缺失会导致SNPC中Th +神经元的细胞自主丧失。bmal1缺失并未改变α-突触核蛋白原纤维注射后神经元丧失的百分比,尽管BMAL1 -KO小鼠在基线时的神经元较少。转录组学分析表明,参与氧化磷酸化和帕金森氏病的途径失调。这些发现证明了BMAL1在调节多巴胺能神经元存活中的细胞自主作用,并且可能对PD的神经保护具有重要意义。