基于活动的 CRISPR 扫描揭示 DNA 甲基化维持机制中的变构 Kevin C. Ngan 1,2、Samuel M. Hoenig 1、Pallavi M. Gosavi 1,2、David A. Tanner 1、Nicholas Z. Lue 1,2、Emma M. Garcia 1,2、Ceejay Lee 1,2 和 Brian B. Liau 1,2 * 隶属关系:1 美国马萨诸塞州剑桥市化学与化学生物学系 2 美国马萨诸塞州剑桥市哈佛大学和麻省理工学院 Broad 研究所 02142 *通讯地址:liau@chemistry.harvard.edu 摘要 变构能够动态控制蛋白质功能。一个典型的例子是严格协调的 DNA 甲基化维持过程。尽管变构位点具有重要意义,但系统地识别变构位点仍然极具挑战性。在这里,我们使用基于活性的抑制剂地西他滨对必需的维持甲基化机制——DNMT1 及其伴侣 UHRF1——进行 CRISPR 扫描,以揭示调节 DNMT1 的变构机制。通过计算分析,我们确定了远离活性位点的 DNMT1 中假定的突变热点,这些热点包括跨越多域自抑制界面和未表征的 BAH2 域的突变。我们从生化角度将这些突变表征为增加 DNMT1 活性的功能获得突变。将我们的分析推断到 UHRF1,我们在多个域中辨别出假定的功能获得突变,包括跨自抑制 TTD-PBR 界面的关键残基。总的来说,我们的研究结果强调了基于活性的 CRISPR 扫描在提名候选变构位点方面的实用性,甚至超越了直接药物靶点。简介变构是一种基本特性,它使蛋白质能够将一个位点的刺激作用转化为调节另一个远端位点的功能。尽管进行了深入研究,但在不同的蛋白质靶标中识别变构位点仍然具有挑战性,并且高度依赖于上下文。与正构位点不同,变构位点在相关蛋白质之间的保守性通常较低,并且控制其结构特征和特性的原理尚不清楚。1,2 由于这些挑战,用于识别和表征变构位点的实验和计算方法较少。3 尽管如此,人们仍在努力开发小分子变构调节剂,因为与正构配体相比,变构位点的结构多样性具有更高的选择性、更低的毒性和蛋白质功能的微调潜力。1,2 因此,开发能够识别变构机制的新工具将进一步加深我们对蛋白质调控的理解并促进药物发现。同时利用药理学和遗传学扰动已广泛成功地用于靶标反卷积和阐明药物作用机制。4 特别是,识别出导致药物耐药性的突变可为靶向作用提供关键验证,并且通常可以阐明潜在的生物学原理。5 尽管许多耐药性突变发生在药物结合位点附近,但它们也可能出现在靶蛋白的远端位置。即使药物在正构位点内结合,这些远端突变也可以通过扰乱变构机制起作用。6–8 例如,对 ABL1 抑制剂(包括正构和变构抑制剂)的耐药性突变始终出现在药物结合位点之外,并通过破坏非活性构象或以其他方式中和 ABL1 自身抑制来驱动耐药性。8–12 此类
多结构域蛋白内的变构信号传导是空间上相距较远的功能位点之间通信的驱动因素。了解大型多结构域蛋白中变构耦合的机制是实现系统空间和时间控制的最有希望的途径。最近,CRISPR-Cas9 在分子生物学和医学领域的应用激增,这促使人们需要了解 Cas9 的原子级蛋白质动力学(这是其变构串扰的驱动力)如何影响其生物物理特性。在本研究中,我们使用核磁共振 (NMR) 和计算的协同方法来精确定位热稳定性 Geo Cas9 的 HNH 结构域中的变构热点。我们表明,K597 突变为丙氨酸会破坏盐桥网络,进而改变 Geo HNH 结构域的结构、变构运动的时间尺度和热稳定性。在广泛研究的中温 S. pyogenes Cas9 中,这种同源赖氨酸到丙氨酸的突变同样改变了 Sp HNH 域的动力学。我们之前已经证明,通过突变改变变构是 Sp Cas9 (e Sp Cas9) 特异性增强的来源。因此,这在 Geo Cas9 中可能也是如此。由 AIP Publishing 独家授权发布。https://doi.org/10.1063/5.0128815
摘要:对于细胞周期蛋白依赖性激酶12和13(CDK12和CDK13)的有效抑制剂的合理设计和开发在很大程度上取决于对动态抑制构象的理解,但很难通过常规特征工具来实现。在此,我们整合了赖氨酸反应性分析(LRP)和天然MS(NMS)的结构质谱法(MS)方法,以系统地询问动态分子相互作用和CDK12/CDK13-CYCLIN K(cyck)的整体蛋白质组装,而小型分解物的调节构成。基本结构见解,包括抑制剂结合袋,结合强度,界面分子细节和动态构象变化,可以从LRP和NMS的互补结果中得出。我们发现抑制剂SR-4835结合可以极大地破坏CDK12/CDK13-CYCK相互作用,以异常的变构激活方式,从而为激酶活性抑制提供了一种新颖的替代方法。我们的结果强调了LRP与NMS的巨大潜力,用于评估和合理设计分子水平的有效激酶抑制剂。
摘要:β-内酰胺酶抑制蛋白(BLIP)能有效灭活A类β-内酰胺酶,但效力程度差异很大。了解BLIP在A类β-内酰胺酶抑制中的不同作用可以为抑制剂设计提供参考。然而,基于X射线晶体学获得的静态结构,这个问题很难得到解决。在本研究中,离子迁移质谱、氢氘交换质谱和分子动力学模拟揭示了三种A类β-内酰胺酶的构象动力学,BLIP对它们的抑制效率不同。与TEM1和SHV1相比,PC1的构象更长。几个重要的环区域的局部动力学不同,即突出环、H10环、Ω环和SDN环。与BLIP结合后,这些环协同重排以增强结合界面并使催化位点失活。具体来说,在 SHV1 和 PC1 的突出环中发现构象动力学的不利变化,从而导致结合效果降低。有趣的是,BLIP 上的单个突变可以补偿该区域的不利变化,从而表现出对 SHV1 和 PC1 的增强的抑制作用。此外,还揭示了 H10 区域是一个重要的变构位点,可以调节 A 类 β-内酰胺酶的抑制作用。这表明刚性的突出环和灵活的 H10 区域可能是有效抑制 TEM1 的决定因素。我们的研究结果为 β-内酰胺酶的构象动力学及其与 BLIP 的结合提供了独特而明确的见解。这项工作可以扩展到其他感兴趣的 β-内酰胺酶并启发新型抑制剂的设计。
关键点r直接与心脏肌球蛋白-2运动结构域的直接结合增加了正磷酸盐的释放速率,并增加了低负载下心肌的Ca 2 +反应性。瘤胃酸的生理细胞浓度会影响β-心脏肌球蛋白的超浮标和无序的松弛状态的ATP周转率,从而导致肌肌酸代谢负荷净增加。r在Ca 2 +激活的小梁中,瘤胃酸对产生力的机制产生直接抑制作用,而不会影响生成力的电动机的数量。r在饱和肌动蛋白浓度的存在下,瘤胃酸与200 nm的EC 50与β-心肌球蛋白-2运动结构域结合。分子对接研究提供了有关结合位点,结合模式以及相关的变构通信途径的信息。r游离叛变酸可能超过心肌细胞中的阈值,而收缩效率降低并干扰针对心脏肌球蛋白的小分子疗法。
19个评估患者; 95%CI 0-15.8%)。 患者有部分反应。 响应时间为56周。 患者继续接受紫脂蛋白,直到急性吻合性炎的发展为先前的手术并发症和紧急住院治疗。 戒断阿洛菲尼治疗导致第79周(在阿洛菲尼停产后一个月)复发,这通过活检和随后的组织学检查证实。 DOR为18.53个月。 射线照相确认稳定疾病的速率为63.2%(19例患者中有12例; 95%CI 42.1-84.2%)。 DCR为68.4%(19例患者中有13例; 95%CI 47.4-89.5%),疾病进展率为31.6%(19例患者中有6例; 95%CI 10.5-52.6%)。 在研究中未发现反应或疾病控制的剂量依赖性(以50 mg/m2的剂量发现了部分反应,同伙1-5的疾病控制率为100%,66.7%,66.7%,66.7%,19个评估患者; 95%CI 0-15.8%)。患者有部分反应。响应时间为56周。患者继续接受紫脂蛋白,直到急性吻合性炎的发展为先前的手术并发症和紧急住院治疗。戒断阿洛菲尼治疗导致第79周(在阿洛菲尼停产后一个月)复发,这通过活检和随后的组织学检查证实。DOR为18.53个月。射线照相确认稳定疾病的速率为63.2%(19例患者中有12例; 95%CI 42.1-84.2%)。DCR为68.4%(19例患者中有13例; 95%CI 47.4-89.5%),疾病进展率为31.6%(19例患者中有6例; 95%CI 10.5-52.6%)。在研究中未发现反应或疾病控制的剂量依赖性(以50 mg/m2的剂量发现了部分反应,同伙1-5的疾病控制率为100%,66.7%,66.7%,66.7%,
不应发展抵抗。此外,由于不同病毒使用重叠的细胞途径和因素来支持其复制(4)和抗病毒防御系统通常以这些常见途径为目标,因此HTA可以表现出广泛的光谱活性(5)。因此,HTA具有治疗病毒疾病的类别,而病毒剂跨越了多个病毒家族。重要的是,广谱HTA具有在大流行病开始时提供快速治疗溶液的潜力,从而减少了新型病毒鉴定和药理干预之间的时间(6,7)。超出了这种定期需求,HTA可以治疗患有不同家族病毒感染风险的患者,例如在免疫抑制治疗期间患有疱疹病毒,帕托病毒,多瘤病毒,肝瘤病毒,肝癌,肝癌和可可菌感染风险升高的患者(8、9)。
1 趋化因子信号传导组,免疫学和肿瘤学系,国家生物技术中心/CSIC,坎托布兰科校区,28049,马德里,西班牙。 2 林雪平大学卫生、医学和护理科学系诊断和专科医学科,58185,林雪平,瑞典。 3 玛格丽塔萨拉斯生物研究中心(CIB-CSIC),28040,马德里,西班牙。 4 生物计算部门,国家生物技术中心(CNB-CSIC),Cantoblanco 校区,28049 马德里,西班牙。 5 西班牙马德里公主大学医院(IIS-Princesa)健康研究所免疫学系,28006。 6 加拿大安大略省汉密尔顿市麦克马斯特大学施罗德过敏和免疫学研究所麦克马斯特免疫学研究中心 (MIRC) 医学系,邮编 L8S 4L8。 7 弗朗西斯科维多利亚大学(UFV)实验科学学院,28223,马德里,西班牙。 8 B 淋巴细胞动力学,免疫学和肿瘤学系,国家生物技术中心 (CNB)/CSIC,坎托布兰科校区,28049,马德里,西班牙。 9 神经退行性疾病生物医学研究网络中心(CIBERNED),卡洛斯三世健康研究所,28029 马德里,西班牙 10 X 射线晶体学部门,大分子结构系,国立生物技术中心/CSIC,坎托布兰科校区,28049,马德里,西班牙。 * 通讯作者:Mario Mellado,西班牙马德里 28049 Cantoblanco, Darwin 3,CNB/CSIC 免疫学和肿瘤学系。电话:(+34)91/585-4852;传真:(+34)91/372-0493;邮箱: mmellado@cnb.csic.es