绝对和相对轨迹测量系统 (ARTMS) 是一种软件有效载荷,它使配备低成本光学传感器的大量合作观察员能够仅使用方位角测量同时估算自己的轨道和附近非合作驻留空间物体的轨道。ARTMS 通过克服以前飞行演示中的关键限制,在仅角度导航方面取得了进步,这些限制包括:1) 依赖地面提供的精确先验相对轨道信息,2) 无法容纳多个观察员或目标,3) 依赖机动来提高可观测性,以及 4) 依赖 GPS 等外部计量来估算观察员的绝对轨道。相比之下,ARTMS 在多智能体框架内应用创新算法来实时自主估算机载多个观察员和目标的轨道。 ARTMS 通过使用低成本小型卫星硬件并尽量减少对机动和地面交互的依赖,提供自主、稳健且可扩展的绝对和相对导航,满足未来深空任务的关键需求。
Nils R. Sandell Jr. 博士主席独立顾问专业知识指挥与控制;通信;制导、导航与控制;信息融合与管理;ISR、跟踪与识别;低可观测性;建模、仿真与分析;科技管理;系统工程 经验 独立顾问 2016 年至今 国防高级研究计划局战略技术办公室主任,2013 年 - 2016 年 独立顾问 2010 年 - 2013 年 BAE 系统公司先进信息技术副总裁,2004 年 - 2010 年 ALPHATECH INC. 总裁兼首席执行官,1979 年 - 2004 年 麻省理工学院 电气工程和计算机科学副教授,1976 年 - 1979 年 电气工程和计算机科学助理教授,1974 年 - 1976 年 教育 麻省理工学院 电气工程博士 电气工程硕士 明尼苏达大学 电气工程学士 荣誉 美国自动控制委员会 Donald P. Eckman 奖 美国空军指挥官公共服务奖 美国国防部杰出公共服务奖 Eta Kapa Nu;Tau Beta Pi
讲座系列中涉及的精确打击导弹系统的新兴技术包括:任务规划技术。评估包括机外传感器集成、近实时任务规划、飞行高度、地形跟踪和用于飞行中瞄准的导弹数据链路。导弹空气力学技术。评估包括高超音速机身、低成本/高温结构和冲压式喷气推进。制导与控制技术。概述了现有的制导和控制。评估包括精确制导和最佳制导律。导弹 GPS/INS 传感器技术。评估包括低成本 INS 和 GPS/INS 集成。导弹设计技术。概述了导弹设计过程。评估包括概念设计和导弹设计标准的计算机程序和电子表格。导引头技术。评估包括主动和被动成像红外和雷达导引头。导弹/飞机集成技术。评估包括高火力武器概念、减少可观测性和不敏感弹药。模拟/验证技术。评估包括硬件在环和设计验证。自动目标识别技术。评估包括稳健算法和硬件/算法优化。
CRE 还指出,系统运营商已发出招标,要求采用本地灵活性来解决电网拥堵问题。然而,这些招标仍是临时的或试验性的,而灵活性的使用将在限制电网基础设施投资方面发挥重要作用,无论如何,电网基础设施投资都会急剧增加。对于 CRE 来说,系统运营商在灵活性的使用和电网加固之间进行仲裁时,必须表现出技术中立性。这就是为什么 CRE 要求他们系统地研究灵活性的使用,以及如何在相关解决方案被证明比电网加固更合适时将其工业化。电网可观测性涉及收集电网结构数据以确保其正常运行,并远程监控某些资产,它有多种用例:远程故障检测、预测性维护和故障识别以及优化电网利用率。CRE 已经观察到智能电网运行和信息反馈的良好集成水平,许多工业化项目和研发计划都专注于预测性维护和电网规模。
讲座系列中涉及的精确打击导弹系统的新兴技术包括:任务规划技术。评估包括机外传感器集成、近实时任务规划、飞行高度、地形跟踪和用于飞行中瞄准的导弹数据链路。导弹空气力学技术。评估包括高超音速机身、低成本/高温结构和冲压式喷气推进。制导与控制技术。概述了现有的制导和控制。评估包括精确制导和最佳制导律。导弹 GPS/INS 传感器技术。评估包括低成本 INS 和 GPS/INS 集成。导弹设计技术。概述了导弹设计过程。评估包括概念设计和导弹设计标准的计算机程序和电子表格。导引头技术。评估包括主动和被动成像红外和雷达导引头。导弹/飞机集成技术。评估包括高火力武器概念、减少可观测性和不敏感弹药。模拟/验证技术。评估包括硬件在环和设计验证。自动目标识别技术。评估包括稳健算法和硬件/算法优化。
本教程的目的是对线性量子控制系统进行简要介绍。首先介绍线性量子控制系统的数学模型,然后给出一些基本的控制理论概念,例如稳定性、可控性和可观测性,这些概念与量子信息科学中的几个重要概念密切相关,例如无退相干子系统、量子非破坏变量和反作用规避测量。之后,介绍量子高斯态,特别是,介绍了一种信息论不确定性关系,它通常比众所周知的海森堡不确定性关系为混合高斯态提供更好的界限。介绍了量子线性系统的量子卡尔曼滤波器,它是经典(即非量子力学)线性系统的卡尔曼滤波器的量子类比。记录了量子线性系统的量子卡尔曼正则分解,并通过最近的实验说明了其应用。由于单光子态和多光子态是量子信息技术中的有用资源,因此本文介绍了量子线性系统对这些类型输入的响应。最后,简要介绍了量子线性系统的相干反馈控制,并使用最近的实验证明了量子线性系统和网络理论的有效性。
本教程的目的是对线性量子控制系统进行简要介绍。首先介绍线性量子控制系统的数学模型,然后介绍一些基本的控制理论概念,例如稳定性、可控性和可观测性,这些概念与量子信息科学中的几个重要概念密切相关,例如无退相干子系统、量子非破坏变量和反作用规避测量。之后,介绍量子高斯态,特别是介绍信息论不确定性关系,它通常比众所周知的海森堡不确定性关系为混合高斯态提供更好的界限。介绍了量子线性系统的量子卡尔曼滤波器,它是经典(即非量子力学)线性系统的卡尔曼滤波器的量子类比。记录了量子线性系统的量子卡尔曼正则分解,并通过最近的实验说明了它的应用。由于单光子和多光子状态是量子信息技术中的有用资源,因此介绍了量子线性系统对这些类型输入的响应。最后,简单介绍了量子线性系统的相干反馈控制,并用近期实验证明了量子线性系统与网络理论的有效性。
摘要:使用无人机 (UAV) 自主跟踪动态目标是一个具有挑战性的问题,在许多场景中都有实际应用。在这种情况下,必须解决的一个基本方面与空中机器人的位置估计和控制飞行编队的目标有关。对于非合作目标,必须使用机载传感器估计其位置。此外,对于估计无人机的位置,全球位置信息可能并不总是可用的(GPS 拒绝环境)。这项工作提出了一种基于视觉的合作 SLAM(同步定位和地图绘制)系统,该系统允许一组空中机器人自主跟踪在 GPS 拒绝环境中自由移动的非合作目标。这项工作的贡献之一是提出并研究使用以目标为中心的 SLAM 配置来解决与众所周知的以世界为中心和以机器人为中心的 SLAM 配置不同的估计问题。从这个意义上说,所提出的方法得到了从广泛的非线性可观测性分析中获得的理论结果的支持。此外,还提出了一种控制系统,用于保持相对于目标的稳定无人机飞行编队。在这种情况下,使用 Lyapunov 理论证明了控制律的稳定性。通过采用大量计算机模拟,所提出的系统显示出可能优于其他相关方法。
摘要:使用无人机 (UAV) 自主跟踪动态目标是一个具有挑战性的问题,在许多场景中都有实际应用。在这种情况下,必须解决的一个基本方面与空中机器人和目标的位置估计有关,以控制飞行编队。对于非合作目标,必须使用机载传感器估计其位置。此外,为了估计无人机的位置,全球位置信息可能并不总是可用的(GPS 拒绝环境)。这项工作提出了一种基于视觉的合作 SLAM(同步定位和地图绘制)系统,该系统允许一组空中机器人自主跟踪在 GPS 拒绝环境中自由移动的非合作目标。这项工作的贡献之一是提出并研究使用以目标为中心的 SLAM 配置来解决估计问题,这与众所周知的以世界为中心和以机器人为中心的 SLAM 配置不同。从这个意义上讲,所提出的方法得到了广泛非线性可观测性分析所获得的理论结果的支持。此外,还提出了一种控制系统,用于保持无人机相对于目标的稳定飞行编队。在这种情况下,使用 Lyapunov 理论证明了控制律的稳定性。通过大量计算机模拟,所提出的系统显示出可能优于其他相关方法。
摘要:网络化动态系统(NDS)长期以来一直受到研究者的关注。随着技术的发展,特别是通信和计算机的发展,NDS 的规模迅速增加。此外,一些新问题也随之出现,例如攻击预防、随机通信延迟/故障等。此外,人工智能领域近年来取得的巨大成功极大地刺激了具有大量节点的人工 NDS 的构建。然而,一些基本问题仍然具有挑战性,包括从测量中揭示 NDS 的结构、NDS 可控性/可观测性验证的计算效率条件等。在本次演讲中,我们将介绍一个大规模 NDS 模型,其中子系统通过其内部输出以任意方式连接,并且子系统可能具有不同的动态。给出了子系统交互全局可识别性的基于矩阵秩的必要充分条件,这导致了在存在一些先验信息的情况下关于 NDS 结构可识别性的几个结论。该矩阵还导致了无法仅从实验数据中区分的子系统交互集的明确描述。给出了确定频率的递归程序,在这些频率下系统频率响应能够唯一地确定 NDS 结构。还通过一些数值模拟揭示了“结构可识别度”的重要性,并讨论了其对模型预测能力和系统性能的影响。提出了两个指标分别用于衡量 NDS 结构的绝对和相对松弛度,并针对一些应用重要的情况推导出了它们的明确公式。