13:50-14:50 第 6 节 主席:Toya Ohashi 和 Hiromi Kanegae 先天性代谢错误的体内基因治疗 1) 针对罕见疾病患者正在进行的基因治疗临床试验的结果:MPS IIIa、GSDIa、OTC 缺乏症和威尔逊氏病 Eric Crombez – (Ultragenyx Pharmaceutical Inc. 美国加利福尼亚州诺瓦托) 2) 通过在小鼠中表达血脑屏障穿透酶的 AAV 使 GM1 神经节苷脂储存完全正常化 Koki Matsushima (慈惠会大学医学院基因治疗系)
1. 简介 这一讨论源于两个基本问题:什么是物理上可计算的?图灵可计算性和物理可计算性之间是什么关系?由于图灵可计算性是可计算性理论的核心力量,前一个问题常常用后者来提出(例如,Arrighi 和 Dowek 2012 ;Cotogno 2003 ;Hogarth 1994 ;Shagrir 和 Pitowsky 2003 ;Ziegler 2009 ,以及无数其他人)。Piccinini(2011 年、2018 年)对物理上的丘奇-图灵论题的讨论遵循了这种格式。他认为,如果可计算性概念与对有限观察者在认识论上有用的东西联系起来,那么物理上的丘奇-图灵论题的一个适度版本可能成立。这个谦虚的物理丘奇-图灵论题指出,图灵可计算的内容充当了物理可计算内容的上限,前提是给定一些物理计算的限制。这些限制旨在将讨论限制在对有限观察者可能具有认识论用途的物理计算上。虽然谦虚的物理丘奇-图灵论题似乎很有道理,但我们将看到,皮奇尼尼用来论证这一论题的关于什么算作认识论有用的物理计算的说明需要更明确的概念基础。特别是,我认为它回避了关于人们认为哪些物理过程是可能的计算操作的问题,并隐含地用
3 另外,道具的展示顺序也是随机的。 4 由于10个项目中有4个被呈现,因此如果随机呈现,每个项目出现的次数可能会有所不同。因此,可以使用平衡的不完全区组设计(Louviere 和 Flynn,2010)来确保项目出现的频率相等。然而,由于本章的样本量非常大,达到 150,010(使用下面描述的计数方法),我们确定由于随机呈现而导致的出现次数差异很小。
† 我要感谢 Koichi Kume、Norimichi Ukita、Isamu Yamamoto 和 Daiji Kawaguchi 的深刻评论和建议。本文表达的观点均为作者的观点,并不一定代表其所属机构的观点 ‡ ESRI § 重建机构 ** 日本科学技术振兴机构 †† 京都产业大学
我们所说的可计算的实体对函数是什么意思:朝着自然定义。按“可计算”一词的含义,一个可计算的价值函数𝑓(𝑥1,。。。,𝑥实值输入的,𝑥)是一个函数,可以根据输入来计算其值。 此类功能用于处理数据𝑥1,。 。 。 ,𝑥𝑘。 该数据处理的目标是估计与数量𝑥1,。 。 。 ,thy公式𝑦=𝑓(𝑥1,。) 。 。 ,𝑥)。 例如,我们希望根据当前值𝑥1,。 。 。 ,在此和附近的不同气象量的不同。 但是,在理想的世界中,数据是相应物理量的实际值。 我们学习值的方式是通过测量:通过直接测量或处理适当的辅助测量结果。 因此,重要的是要考虑到测量量永远不会绝对准确,它们始终具有一定的准确性 - 通常由相应二进制表示中的数字数𝑚描述,以便准确性为2 -𝑚。 换句话说,而不是知道实际值𝑎1,。 。 。 ,相应数量的𝑎,我们只知道测量结果𝑥1,。 。 。 。 。 。 。,𝑥)是一个函数,可以根据输入来计算其值。此类功能用于处理数据𝑥1,。。。,𝑥𝑘。该数据处理的目标是估计与数量𝑥1,。。。,thy公式𝑦=𝑓(𝑥1,。。。,𝑥)。例如,我们希望根据当前值𝑥1,。。。,在此和附近的不同气象量的不同。但是,在理想的世界中,数据是相应物理量的实际值。我们学习值的方式是通过测量:通过直接测量或处理适当的辅助测量结果。因此,重要的是要考虑到测量量永远不会绝对准确,它们始终具有一定的准确性 - 通常由相应二进制表示中的数字数𝑚描述,以便准确性为2 -𝑚。换句话说,而不是知道实际值𝑎1,。。。,相应数量的𝑎,我们只知道测量结果𝑥1,。。。。。。。,the the是2 −𝑚- close到这些值,即| 𝑥 -𝑎 -𝑎|从1到𝑘≤2−𝑚。由于已知值𝑥𝑖仅是对实际值𝑎𝑎的近似值,因此结果𝑓(𝑥1,。,数据处理的,仅是所需理想值𝑓的近似值(𝑎1,。 ,𝑎)。 我们要确保结果𝑦=𝑓(𝑥1,。 。 。 ,数据处理的,接近所需的(理想)值𝑏=𝑓(𝑎1,。 。 。 ,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。 实际上,我们希望以一些给定的精度进行估计。 例如,对于温度,精度为几个度。 可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。 在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们,仅是所需理想值𝑓的近似值(𝑎1,。,𝑎)。我们要确保结果𝑦=𝑓(𝑥1,。。。,数据处理的,接近所需的(理想)值𝑏=𝑓(𝑎1,。 。 。 ,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。 实际上,我们希望以一些给定的精度进行估计。 例如,对于温度,精度为几个度。 可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。 在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们,接近所需的(理想)值𝑏=𝑓(𝑎1,。。。,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。实际上,我们希望以一些给定的精度进行估计。例如,对于温度,精度为几个度。可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们
使用可计算电容器保护电极的两个标准位置 [6]。然而,保护电极的连续定位意味着可计算电容器具有固有的可调谐性;图 3(b) 显示了我们如何利用这一点。我们注意到,比率变压器有抽头,因此,如果上侧为 100 V,则下侧可以取 2、3、4、5、6 或 7 V 的值。为了利用可调谐性,我们对比率变压器的一侧使用不同的抽头(6 V 而不是 7 V)和保护电极的两个不同位置(0.22 pF 和 0.66 pF 而不是 0.2 pF 和 0.7 pF)。使用此方法,我们可以在可计算电容器和 10 到 11.6 pF 之间的任意值的低温电容器之间实现平衡。我们已经实现了这种平衡,从而展示了
利用人工智能设计功能性有机分子 用户名:Masato Sumida 1,2 Xiufeng Yang 2 日本理化学研究所实验室隶属关系: 1. 先进智能项目中心富士通协作中心 2. 先进智能项目中心目标导向平台技术研究组分子信息学团队