Loading...
机构名称:
¥ 1.0

我们所说的可计​​算的实体对函数是什么意思:朝着自然定义。按“可计算”一词的含义,一个可计算的价值函数𝑓(𝑥1,。。。,𝑥实值输入的,𝑥)是一个函数,可以根据输入来计算其值。 此类功能用于处理数据𝑥1,。 。 。 ,𝑥𝑘。 该数据处理的目标是估计与数量𝑥1,。 。 。 ,thy公式𝑦=𝑓(𝑥1,。) 。 。 ,𝑥)。 例如,我们希望根据当前值𝑥1,。 。 。 ,在此和附近的不同气象量的不同。 但是,在理想的世界中,数据是相应物理量的实际值。 我们学习值的方式是通过测量:通过直接测量或处理适当的辅助测量结果。 因此,重要的是要考虑到测量量永远不会绝对准确,它们始终具有一定的准确性 - 通常由相应二进制表示中的数字数𝑚描述,以便准确性为2 -𝑚。 换句话说,而不是知道实际值𝑎1,。 。 。 ,相应数量的𝑎,我们只知道测量结果𝑥1,。 。 。 。 。 。 。,𝑥)是一个函数,可以根据输入来计算其值。此类功能用于处理数据𝑥1,。。。,𝑥𝑘。该数据处理的目标是估计与数量𝑥1,。。。,thy公式𝑦=𝑓(𝑥1,。。。,𝑥)。例如,我们希望根据当前值𝑥1,。。。,在此和附近的不同气象量的不同。但是,在理想的世界中,数据是相应物理量的实际值。我们学习值的方式是通过测量:通过直接测量或处理适当的辅助测量结果。因此,重要的是要考虑到测量量永远不会绝对准确,它们始终具有一定的准确性 - 通常由相应二进制表示中的数字数𝑚描述,以便准确性为2 -𝑚。换句话说,而不是知道实际值𝑎1,。。。,相应数量的𝑎,我们只知道测量结果𝑥1,。。。。。。。,the the是2 −𝑚- close到这些值,即| 𝑥 -𝑎 -𝑎|从1到𝑘≤2−𝑚。由于已知值𝑥𝑖仅是对实际值𝑎𝑎的近似值,因此结果𝑓(𝑥1,。,数据处理的,仅是所需理想值𝑓的近似值(𝑎1,。 ,𝑎)。 我们要确保结果𝑦=𝑓(𝑥1,。 。 。 ,数据处理的,接近所需的(理想)值𝑏=𝑓(𝑎1,。 。 。 ,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。 实际上,我们希望以一些给定的精度进行估计。 例如,对于温度,精度为几个度。 可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。 在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们,仅是所需理想值𝑓的近似值(𝑎1,。,𝑎)。我们要确保结果𝑦=𝑓(𝑥1,。。。,数据处理的,接近所需的(理想)值𝑏=𝑓(𝑎1,。 。 。 ,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。 实际上,我们希望以一些给定的精度进行估计。 例如,对于温度,精度为几个度。 可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。 在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们,接近所需的(理想)值𝑏=𝑓(𝑎1,。。。,𝑎),我们需要知道估计值的准确性是什么,即,与所需的值𝑏:如果我们不知道这种准确性,即,即,如果差异𝑦 -𝑏可以任意大,那么估计是没有用的,那么估计是无用的,因为它不会对任何限制施加任何限制。实际上,我们希望以一些给定的精度进行估计。例如,对于温度,精度为几个度。可能是,我们知道的现有准确性不足以达到所需的精度 - 当传感器不太准确时,就会发生这种情况。在这种情况下,要以所需的精度获取值𝑏,我们需要执行更准确的测量 - 我们

每个可行的可计算实数函数都是均匀连续的

每个可行的可计算实数函数都是均匀连续的PDF文件第1页

每个可行的可计算实数函数都是均匀连续的PDF文件第2页

每个可行的可计算实数函数都是均匀连续的PDF文件第3页

每个可行的可计算实数函数都是均匀连续的PDF文件第4页

每个可行的可计算实数函数都是均匀连续的PDF文件第5页