变异量子算法(VQA)如量子近似优化算法(QAOA),变异量子本元素(VQE),量子神经网络(QNN)和量子汇编(QC),可用于求解对噪声中量表量量标准量量表的实用任务(NISQ)的实用任务,这是有希望的。最近的成就证明了量子态制备2 - 6,量子动态模拟2、7-9和量子计量学10-14的有效性。QC,特别是获得了显着的利益。它使用培训过程将信息从未知目标统一转换为可训练的已知统一15,16。此方法具有各种应用,包括盖茨优化15,量子辅助编译16,连续变量的量子学习17,Quantu-State State polagrogrich 18和量子对象模拟2。例如,可以使用QC 2在量子电路中模拟量子对象(例如量子状态)。QC的性能取决于量子数和电路深度的数量。Ansatzes(可训练的量子电路)的选择也至关重要,必须仔细选择。一些纠缠
其中矩阵w(j)µ和w(j)σ表示层j,j j〜n(0,1)的后验分布的平均值和标准偏差,而操作员norm(β,βJ,γJ),可训练的参数βJ和γj的均值和标准偏差,可以指代任何批次,层,层,层,层或实例化。
由于大规模的图像对比训练,预训练的视觉语言模型(VLM)(例如剪辑)表现出优越的开放式摄入识别能力。大多数存在的开放式摄制对象检测器都试图利用预训练的VLM来获得生成表示。f-Vit使用预先训练的视觉编码器作为骨干网,并在训练过程中冻结它。但是,冷冻的骨干线不能从标记的数据中受益,以增强表示形式。因此,我们提出了一种新型的两种分支骨干网络设计,称为VIT-FEATURE-调制多规模卷积网络(VMCNET)。vmcnet由可训练的卷积分支,冷冻预训练的VIT分支和特征调制模块组成。可训练的CNN分支可以通过标记的数据进行优化,而冷冻的预训练的VIT分支可以保持大规模预训练的表示能力。然后,提出的特征调制模块可以通过VIT分支的代表来调节多尺度CNN特征。使用拟议的混合结构,检测器更有可能发现新型类别。在两个流行的基准测试中进行了评估,我们的方法提高了新型类别的检测性能,并构成了基线。在OV-Coco上,该提出的方法以VIT-B/16和48.5 AP Novel 50具有VIT-L/14的AP Nove 50实现44.3 AP Novel 50。在OV-LVIS上,具有VIT-B/16和VIT-L/14的VMCNET达到27.8和38.4地图r。
2002年7月 - 2003年7月,新加坡国立大学工程科学研究所,搜索e ngineer,可训练的计算机视觉系统和移动机器人控制新加坡大学新加坡大学研究项目编号960684•基于群体智能原则开发多机器人任务分配机制•通过二阶学习方法提高自我组织神经网络的绩效和收敛性•增强机器人在合作和多机器人tition tition Newural网络中的机器人的动作选择能力
抽象虽然端到端(E2E)具有基于HIFI-GAN的神经声码器(例如vits and jets)可以以快速推理速度实现类似人类的语音质量,这些模型仍然有空间可以通过CPU使用CPU来进一步提高推理速度,因为基于HIFI-GAN的神经声码器单元是一种瓶颈。此外,HIFI-GAN不仅被广泛用于TT,而且用于许多语音和音频应用。在维持合成质量的同时,已经提出了多式(MS)-HIFI-GAN,ISTFTNET和MS-ISTFT-HIFI-GAN。尽管在ISTFTNET和MS-ISTFT-HIFI-GAN中引入了基于短期的傅立叶变换(ISTFT)的快速上取样,但我们首先发现ISTFT层的预测中间特征输入与原始STFT层完全不同,这是由于ISTFT中的重叠式dancy dancy dancy造成的。为了进一步提高合成质量和推理速度,我们提出了FC-HIFI-GAN和MS-FC-HIFI-GAN,通过引入可训练的完全连接(FC)的基于基于重叠的ADD操作而不是ISTFT层的可训练的完全连接(FC)层的快速上采样。对于看不见的说话者合成和E2E TTS条件的实验结果表明,所提出的方法可以稍微加速推理速度,并显着提高基于JETS的E2E TTS的合成质量,而不是ISTFTNET和MS-ISTFTNET和MS-ISTFTNET和MS-ISTFTNET。因此,ISTFT层可以用基于HIFI-GAN基于HIFI-GAN的神经声码编码器中的基于重叠的ADD操作的提议的可训练FC层的上采样代替。
联合国大会(2015 年)制定了一项议程,其中包含 17 个目标,需要在全球范围内到 2030 年实现,以促进可持续的未来。实现这些目标需要设计和实施更有效的战略来管理复杂系统,包括人类及其社会、世界经济、城市地区、自然生态系统和气候(Gentili,2021a)。一项有前途的战略,即正在蓬勃发展的战略,依赖于人工智能 (AI) 和机器人技术的发展。人工智能帮助人类收集、存储和处理监测复杂系统不断演变所需的大数据(Corea,2019 年)。人工智能还帮助我们下定决心控制复杂系统的行为。硬机器人和软机器人让人类能够进入原本无法进入的环境。例如,它们帮助我们(1)研究其他行星的地球化学特征、考察海洋深渊以发现新的贵重材料和能源矿藏;(2)进入人体内部器官进行侵入性较小的手术;(3)在肮脏或危险的地方工作。开发人工智能的主要传统方法有两种(Lehman 等人,2014 年;Mitchell,2019 年)。第一种方法是编写在基于冯·诺依曼架构的电子计算机上运行的“智能”软件,该架构的主要缺点是处理单元和存储单元在物理上是分开的。一些软件模仿严谨的逻辑思维,而另一些软件模仿神经网络的结构和功能特征来学习如何从数据中执行任务。开发人工智能的第二种方法是在神经假体的硬件中实现人工神经网络,或设计类似大脑的计算机,将处理器和内存限制在同一空间中(所谓的内存计算;Sebastian 等人,2020 年)。如果人工神经网络由硅基电路或无机忆阻器制成,则它们是刚性的;如果基于有机半导体薄膜,则它们是柔性的(Christensen 等人,2022 年;Lee and Lee,2019 年;Wang 等人,2020 年;Zhu 等人,2020 年)。它们可以采用三种不同的架构进行设计:(A1)前馈(具有可训练的单向连接)、(A2)循环(具有可训练的反馈动作)或(A3)储层(由未训练的非线性动态系统与可训练的输入和输出层耦合而成)网络(Nakajima,2020 年;Tanaka 等人,2019 年;Cucchi 等人,2022 年;见图 1A)。在过去十年左右的时间里,一种开发人工智能的新颖而有前途的策略被提出:它包括通过湿件(即液体)中的分子、超分子和系统化学来模仿人类智能和所有其他生物所表现出的智能形式
通常只保留倾向于协助分类任务的数据的基本方面。完全连接的自动编码器,尤其是在图像的情况下,会导致大量可训练的参数。卷积自动编码器(CAE)提供了更好的选择,因为由于稀疏连接和重量共享,参数数量较少[9]。CAE以层的方式训练,可以将无监督的层彼此堆叠以构建层次结构。每一层都是独立于其他层的训练,其中前一层的输出充当后续层的输入。最后,使用跨凝结目标函数对整体层进行了堆叠和微调。不介意的初始化倾向于避免局部最小值并提高网络性能稳定性。
在正常业务过程中,公司花费大量精力阅读和解释文件,这是一个高度手动的过程,涉及繁琐的任务,例如识别日期和名称或确定合同中某些条款的存在与否。处理自然语言很复杂,而且由于这些文档有各种格式(扫描图像、数字格式)并且具有不同程度的内部结构(电子表格、发票、文本文档),这进一步复杂化了这一过程。我们提出了 DICR,这是一个端到端、模块化且可训练的系统,可自动执行文档审查的日常方面,并允许人类执行验证。该系统能够加快这项工作,同时提高提取信息的质量、一致性、吞吐量并减少决策时间。提取的数据可以输入到其他下游应用程序中(从仪表板到问答和报告生成)。