摘要:二维共轭金属有机框架(2D C-MOF)由于其(半)的导电性能而吸引了对电子的兴趣日益增加。电荷 - 中立2D C-MOF也具有持久的有机自由基,可以看作是自旋浓缩阵列,为Spintronics提供了新的机会。然而,层堆积的2D C-MOF的相邻分子之间的强π相互作用歼灭了活跃的自旋中心,并显着加速了自旋松弛,严重限制了它们作为自旋量子的潜力。在此,我们通过控制层间堆叠来报告2D C -MOF中电荷传输和自旋动力学的精确调整。在共轭配体上引入了笨重的侧基,从而使2D C -MOFS层从锯齿状的堆叠到交错的堆叠量显着脱位,从而在空间上削弱了层间相互作用。因此,2D C -MOF的电导率降低了六个数量级,而旋转密度则增加了30倍以上,并且自旋晶格松弛时间(t 1)增加到〜60 µs,从而使旋转宽松的参考2D C -MOF变得越来越快地占据了旋转的良好。自旋动力学结果还表明,无旋转极化对或双极在这2D C -MOF的电荷传输中起关键作用。我们的策略提供了一种自下而上的方法,可以在2D C-MOF中扩增自旋动力学,从而为开发基于MOF的Spintronics开辟了途径。
(a) 麻醉期间捕获的高分辨率电生理记录和癫痫发作期间在较长时间间隔内捕获的病理记录。(b) 图表说明了传感器在大鼠大脑的横截面视图中的放置位置,作为模型。(c) 与使用电极收集的信号 (蓝色) 相比,从放大传感器 (红色) 获得的信号表现出更高的信号分辨率和幅度。此外,与植入电极 (黑色) 记录的信号相比,放大传感器成功检测到癫痫发作期间明显的 5-10 Hz 振荡信号,这在时频频谱图中很明显。图片来源:POSTECH
DNA 甲基化 (DNAme) 是一种关键的表观遗传标记,可调节维持整体基因组稳定性的关键生物过程。鉴于其多效性功能,对 DNAme 动力学的研究至关重要,但目前可用的干扰 DNAme 的工具存在局限性和严重的细胞毒性副作用。在这里,我们提出了允许通过 DNMT1 耗竭进行可诱导和可逆 DNAme 调节的细胞模型。通过动态评估通过细胞分裂诱导的被动去甲基化的全基因组和位点特异性效应,我们揭示了 DNMT1 和 DNMT3B 之间的协同活动,但不是 DNMT3A,以维持和控制 DNAme。我们表明,DNAme 的逐渐丧失伴随着异染色质、区室化和外周定位的逐渐和可逆变化。DNA 甲基化丧失与由于 G1 停滞而导致的细胞适应性逐渐降低相吻合,并伴有轻微的有丝分裂失败。总之,该系统可以进行具有精细时间分辨率的 DNMT 和 DNA 甲基化研究,这可能有助于揭示 DNAme 功能障碍与人类疾病之间的病因联系。
微/纳米级激光器遍及整个可见光谱,尤其是红色,绿色和蓝色的光谱,不仅对于各种光学设备,而且在可见的色彩通信,多色荧光感应中以及波长的多重效率上都具有重要的应用。尽管采用了多种方法,片上白光发射,甚至是红色,绿色和蓝色的多色激光器,但仍遇到了微型纳米结构中的巨大挑战。在此,使用化学蒸气沉积方法成功制备了CDS X SE 1-X,CD和ZnS微型Tripod结构。这些微丝脚架的微型发光(μ-PL)光谱和PL映射分别在630、508和460 nm处揭示了各种排放。此外,基于这些组成可调的三脚架的白光排放是通过终端耦合结构系统实现的。此外,从这些微丝脚架的三个腿上清楚地观察到可调激光器的室温模式,低阈值约为48.39μjcm-2,高质量系数为1227.3。基于微脚架的激光器的实现可能为高度集成的光子电路和通信提供了一种创新的方式。
偏见的双层石墨烯(BBG)是基于石墨烯 - 基于石墨烯的系统中兴奋性效应的重要系统,其易于调谐带隙。此带隙受外部门电压的控制,使一个人可以调整系统的光学响应。在本文中,我们研究了Bernal堆叠的BBG的激子线性和非线性光学响应,这是栅极电压的函数,包括平面(IP)和平面(OOP)方向。基于BBG电子结构的半分析模型,描述了栅极电压对激子结合能的影响,我们将讨论重点放在IP和OOP示例性响应上。线性和第二个谐波产生(SHG)非线性响应都对栅极电压非常敏感,因为带相互动量矩阵元素和系统的带隙都会随偏置潜力而变化。
摘要:一组新型的供体 - 受体donor(D-A-D)苯甲二唑衍生物已合成并在纳米晶体中结晶,以探索其化学结构与波导发光特性之间的相关性。的发现表明,所有晶体都表现出发光和主动的光学波形,这表明能够根据附着在苯甲酰甲二氮唑核的供体组中调节其在550–700 nm的宽光谱范围内。值得注意的是,每种化合物的同型能量间隙与相应光波导的颜色发射之间存在明显的关系。这些结果肯定了通过合适的化学功能化来修饰有机波导的颜色发射的可行性。重要的是,本研究标志着出于这种目的的苯甲酰基衍生物的首次利用,强调了这项研究的独创性。此外,纳米晶体的获得是实施微型光子设备的关键工具。
摘要:为了响应日益增长的时间信息处理的需求,神经形态计算系统正在越来越强调备忘录的开关动力学。虽然可以通过输入信号的属性来调节开关动力学,但通过备忘录的电解质特性控制它的能力对于进一步丰富了开关状态并提高数据处理能力至关重要。这项研究介绍了使用溶胶 - 凝胶过程的介孔二氧化硅(MSIO 2)膜的合成,从而可以创建具有可控孔隙率的膜。这些薄膜可以用作扩散的回忆录中的电解质层,并导致可调的神经形态切换动力学。MSIO 2回忆录表现出短期可塑性,这对于时间信号处理至关重要。随着孔隙率的增加,观察到工作电流,促进比和放松时间的明显变化。研究了这种系统控制的基本机制,并归因于二氧化硅层多孔结构内的氢键网络的调节,这在切换事件中显着影响阳极氧化和离子迁移过程。这项工作的结果提出了介孔二氧化硅,作为一个独特的平台,用于精确控制扩散的备忘录中神经形态开关动力学。关键字:介孔二氧化硅,扩散的回忆录,神经形态切换,短期记忆,离子动力学
手性分子的准确检测,分类和分离是推进药物和生物分子创新的关键。设计的手性光提出了一种有希望的途径,以增强光与物质之间的相互作用,从而提供一种无创,高分辨率和具有成本效益的方法来区分对映异构体。在这里,我们提出了一个基于ACHIRAL等离子体系统的纳米结构平台,用于表面增强红外吸收吸收诱导的Vi-Brational圆形二色性(VCD)。该平台可以对对映体混合物的精确度量,分化和量化,包括浓度和对映体的多余确定。与常规的VCD光谱技术相比,我们的手性对映异构体的检测灵敏度高13个数量级的检测敏感性,这是相应的路径长度和浓度。该刺激性等离子体系统的可调光谱特性促进了多种手性化合物的检测。平台的简单性,可调节性和出色的灵敏度具有在药物设计,药物和生物应用中分类的巨大潜力。
硅胶因其与组织和体液的兼容性而被广泛应用于医疗器械,使其成为植入物和可穿戴设备的多功能材料。为了有效地将硅胶装置粘合到生物组织上,需要使用可靠的粘合剂来形成持久的界面。本文介绍了一种基于硅胶的生物粘合剂 BioAdheSil,旨在为界面两侧提供强大的粘合力,促进不同基质(即硅胶装置和组织)之间的粘合。粘合剂的设计侧重于两个关键方面:湿组织粘合能力和基于组织渗透的长期整合。BioAdheSil 是通过将软硅胶低聚物与硅氧烷偶联剂和吸收剂混合而配制而成,用于将疏水性硅胶装置粘合到亲水性组织上。加入可生物降解的吸收剂可消除表面水并控制孔隙率,而硅烷交联剂可提供界面强度。随着时间的推移,BioAdheSil 通过酶降解从不渗透性转变为渗透性,形成有利于细胞迁移和组织整合的多孔结构,从而可能实现持久的粘附。实验结果表明,BioAdheSil 的性能优于商用粘合剂,并且不会在大鼠身上引起不良反应。BioAdheSil 具有将硅胶装置粘附到湿组织上的实用性,包括长期植入物和经皮装置。在这里,它的功能通过气管支架和左心室辅助装置管线等应用得到展示。
硅胶因其与组织和体液的兼容性而被广泛应用于医疗器械,使其成为植入物和可穿戴设备的多功能材料。为了有效地将硅胶装置粘合到生物组织上,需要使用可靠的粘合剂来形成持久的界面。本文介绍了一种基于硅胶的生物粘合剂 BioAdheSil,旨在为界面两侧提供强大的粘合力,促进不同基质(即硅胶装置和组织)之间的粘合。粘合剂的设计侧重于两个关键方面:湿组织粘合能力和基于组织渗透的长期整合。BioAdheSil 是通过将软硅胶低聚物与硅氧烷偶联剂和吸收剂混合而配制而成,用于将疏水性硅胶装置粘合到亲水性组织上。加入可生物降解的吸收剂可消除表面水并控制孔隙率,而硅烷交联剂可提供界面强度。随着时间的推移,BioAdheSil 通过酶降解从不渗透性转变为渗透性,形成有利于细胞迁移和组织整合的多孔结构,从而可能实现持久的粘附。实验结果表明,BioAdheSil 的性能优于商用粘合剂,并且不会在大鼠身上引起不良反应。BioAdheSil 具有将硅胶装置粘附到湿组织上的实用性,包括长期植入物和经皮装置。在这里,它的功能通过气管支架和左心室辅助装置管线等应用得到展示。