虽然DNA的合成通常通过非共价可逆相互作用进行,但是它们也可以被设计为在多种化学和环境刺激下改变其结构构型或功能。[15,16] 然而,对这些超分子功能生物支架的合理和可编程控制仍然具有挑战性,而且通常难以以多功能和动态的方式实现多个标记基团的高阶组织。与用于结构和支架自组装的其他生物分子相比,使用合成DNA作为构建块具有几个优点。首先,DNA-DNA碱基配对的可预测和可编程性质使我们能够合理设计具有明确定义的二维和三维几何形状的DNA结构。[17,18] 其次,DNA链的序列特异性可寻址性加上在DNA寡核苷酸骨架上共价连接不同功能部分的可能性,使得可以使用多个分子标记在DNA结构的特定位置进行受控纳米级修饰。近年来,人们已成功利用上述特性制造出以 DNA 为基础的支架,并用其修饰各种不同的化学和生物物质,如抗体[19,20] 信号部分[21,22] 适体[23,24] 病毒衣壳[25,26] 和蛋白质 [27,28],这些材料已在生物成像、药物输送和癌症治疗中得到应用。[21,29,30] 尽管上述例子清楚地说明了合成 DNA 作为构建分子生物支架的构件的多功能性,但迄今为止用于修饰 DNA 组装体的方法往往缺乏多功能性和可编程性,它们是“静态的”,不能在没有事先拆卸结构的情况下“动态”更换标签。开发新方法以动态方式控制用多个功能部分修饰和标记 DNA 支架,将有助于获得具有更高适应性、精确度和传感能力的功能生物材料。受上述论点的启发,我们在此展示了一种实现 DNA 支架动态和位点特异性修饰的策略。为此,我们使用了一种通过 DNA 片自组装形成的模型支架系统 DNA 结构。更具体地说,我们使用了通过五条不同的 DNA 链杂交形成的反向平行双交叉 DNA 片 (DAE-E)。[31–33] 这些片显示 4 个单链粘性末端(每个 5 个核苷酸),可诱导其
本教程提供了可逆计算的概念的介绍,采用了扩展的视图:除了快速概述传统的能量动机硬件观点外,它还提供了一种新兴应用程序动机软件方法的深度覆盖,以进行可逆计算。这对于理解可逆计算的不同新颖方法很有用,在大规模计算(例如设想的EXA级发展)中提供了当前方法的潜力。在未来的非常大规模的超级计算中,在容错,调试和同步的背景下说明了通用可逆计算对未来并行处理的重要性。教程涵盖了理论,硬件和软件方面,显着的基本限制,复杂性分析,算法和自动化方法,以进行可逆计算。范式将介绍用于放宽可逆编程的常规远期编程,包括用于低功率计算的“ Compute-Copy-copy-copy-nodympute”和“ Compute-Rollback-Commit”范式,分别为低功率计算和乐观的并行同步。将提出实用算法,以用于可逆性,例如动态内存分配和从复杂分布中生成随机数。将显示最新结果,以表明通过依赖软件级可逆计算而不是检查检查点来克服某些应用程序中的存储墙的可能性。教程大纲将阐明新的可逆编程语言设计的概念,并且将通过对C语言的初步案例研究来描述现有程序可逆执行的当前汇编方法。在更广泛地采用可逆计算中,将在并行处理(包括可逆的计算机算术和输入/输出接口)中确定出色的挑战,并为此提供了一些新颖的方向。
从http://aacrjournals.org/cancerdiscovery/article-pdf/doi/10.1158/2159-8290.cd22-22-22-0952/3404475/cd-22-22-22-0952.pdf by bern University by Bern Universiti
传统 CMOS 逻辑的能效正在快速接近实际极限,而这最终源于基本的物理考虑。根据 IRDS 路线图,到 2030 年左右,最小典型逻辑信号能量预计将降至最低,约为 0.2 fJ (1.25 keV)。这将加剧可实现的设备密度(随着行业转向 3D VLSI 技术,该技术可以在一个制造过程中集成多个“层”有源设备,设备密度将继续增加)与芯片封装内功率耗散密度保持可控的需求之间的矛盾。实际上,这些限制将导致实际芯片设计中潜在可用的设备数量资源越来越未得到充分利用,加剧了目前已经存在的“暗硅”问题。
生成的神经辐射场(NERF)通过学习一组未经未介绍的图像的分布来综合多视图图像,表现出非常熟练的熟练程度。尽管现有的生成nerf具有在数据分布中生成3D一致的高质量随机样本的才能,但创建单数输入图像的3D表示仍然是一个巨大的挑战。在此手稿中,我们介绍了Zignerf,这是一种创新的模型,该模型执行零击生成的对抗网(GAN)倒置,以从单个脱离分布图像中生成多视图。该模型的基础是一个新型逆变器的基础,该逆变器映射到了发电机歧管的潜在代码中。毫无意义,Zignerf能够将对象从背景中解散并执行3D操作,例如360度旋转或深度和水平翻译。使用多个实数数据集对我们的模型的效率进行验证:猫,AFHQ,Celeba,Celeba-HQ和Compcars。
切换控制模式A或B对Q2和Q3或Q1和Q4,同时逆转每个开关的电机电源电流。当使用Q2和Q3时,B-OUT和A-OUT分别是高水平和低水平。在这种情况下,电流会流动b-out→电动机→A-out,如下表所述导致向前操作。使用Q1和Q4时,电流向上流向上述流动,从而导致反向电动机操作。
摘要:薄膜上和晶体内部的激光干扰图案是今天创建用于光学数据处理所需模式的功能强大的工具。在这里,我们分别通过水解吸和热分解过程在金属有机框架(MOF)薄膜上表现出可逆和不可逆的激光干扰。已经实现了不可逆的干扰模式,其带有高达5 µm的条带的不可逆转的干扰模式已经实现,并且使用共焦拉曼和反射光谱以及原子力显微镜表征了其形态。我们透露,将干扰最大值之间的距离从10.5降低到MOF的5 µm记录,使不可逆模式的表面粗糙度增加了10倍。另一方面,可逆的激光模式提供了可变光学对比度的完全无损的效果。获得的实验结果为使用MOF晶体作为光敏材料的模板图中所需模式的模板图中的光敏材料开放了前景。
量子计算是一个新兴新兴的计算环境,最近从硬件和软件的角度完全利用了其高计算能力,吸引了激烈的研究兴趣。特别是,已经尝试通过有效的量子电路合成量子计算算法中的错误。在这项研究中,我们提出了优化模型的应用,用于合成具有最低实施成本的量子电路,以通过形成更简单的电路来降低错误率。我们的模型具有独特的结构,将电弧子集选择问题与常规多商品网络流模型结合在一起。该模型用多个控制Toffoli门靶向电路合成,以实现布尔可逆函数,这些功能通常用作许多量子算法中的关键组件。与以前的研究相比,所提出的模型具有统一但直接的结构,用于利用量子门的操作特征。我们的计算实验显示了所提出的模型的潜力,与先前的研究相比,获得量子成本较低的量子电路。所提出的模型还用于利用可逆逻辑的其他各个领域,例如低功率计算,容忍故障的设计和DNA计算。此外,我们的模型可以应用于基于网络的问题,例如物流分布和时间阶段网络问题。
a 德克萨斯大学达拉斯分校化学与生物化学系,b 可再生能源与车辆技术实验室,c 生物医学工程系,800 West Campbell Road,理查森,德克萨斯州 75080,美国。d 印度理工学院印多尔分校 (IIT Indore) 物理学科和冶金工程与材料科学 (MEMS) 学科,Simrol,Khandwa Road,Indore-453552,中央邦 (MP),印度。e FAMU-FSU 联合工程学院化学与生物医学工程系,佛罗里达州塔拉哈西 32310,美国。f 当前地址:密歇根州立大学化学工程与材料科学系,密歇根州东兰辛 48824,美国。† 这些作者对本文贡献相同。* jmendoza@msu.edu * Gassensmith@utdallas.edu 摘要
摘要:现代计算架构正在向计算可逆性发挥根本作用的系统发展。该领域的一项关键创新是开发一种新型算术逻辑单元 (ALU),该单元保持完整的双向操作能力。这种先进的 ALU 架构采用复杂的多路复用器配置和精确的控制信号来实现可逆计算。作为中央处理单元中的关键组件,这种可逆 ALU 设计代表着向可编程量子计算系统迈出了重要一步。该架构利用基于多路复用器的操作选择,在保持信息保存的同时实现灵活的计算路径。通过实现可编程可逆逻辑门,该设计超越了传统的与/或门限制。所提出的 4 位 ALU 配置通过利用反向数据参考实现了更高的效率,显著降低了逻辑电路的功耗。通过使用包括 Verilog HDL、ModelSim Altera 和 Quartus Prime 在内的行业标准工具进行全面仿真验证了该实现,证实了该设计适用于下一代计算应用。这种创新方法代表了开发节能、量子兼容处理单元的关键进步。