摘要:我们提出了一个新型的带有有限的baryon和Isospin化学势的QCD中的新型重型涡流相。众所周知,均质带电的PION冷凝物在有限的等音化学势下作为基态出现,因此,带有施加磁场的Abrikosov Vortex晶格出现。我们首先证明具有与常规Abrikosov涡流具有相同量化的磁通量的涡流,一旦我们考虑了对涡旋内部核心内部中性亲的调制,将由第三个同型Skyrmions捕获的Baryon数。因此,这种涡旋 - 西卡米式状态被称为Baryonic涡流。我们进一步揭示,当巴属化学电位高于临界值时,重型涡流会从带电的Pion凝结中测量负张力。这意味着在没有外部磁场的情况下自发出现此类涡旋的相位,将在高baryon密度下接管基态。这样的新相促进了QCD相图的理解,并与中子星内的磁场的产生有关。
摘要 本文研究了在综合仿真环境中具有时变质量和惯性特性的受油机的动态建模与仿真应用,该环境包括另外两个重要因素,即具有变长度特性的软管-锥套组件动态模型和加油机尾涡引起的风效应。通过扩展 Lewis 等人推导的固定重量飞机的运动方程,推导出一组新的空中加油受油机运动方程。这些方程包括由于燃油转移和发动机燃油消耗引起的时变质量和惯性特性,并且油箱为矩形而非质点。它们是根据受油机相对于惯性参考系的平移和旋转位置和速度推导出来的。在初始受油机质量条件下,基于一组线性化方程设计了一个线性二次调节器 (LQR) 控制器。在集成仿真环境中实现了带有 LQR 控制器的接收机运动方程,用于在仿真中实现接收机的自主接近和定点保持。� 2016 中国航空学会。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
2 /𝑎1,带有𝑎1= 2.5×2 = 0.8 𝜆 𝜆。所有波导壁都被视为PEC边界,而𝜆 𝜆是NZI频率下的自由空间波长。(b) - (d)时间平均poynting载体场(𝐒𝐒,功率流)的实际部分的幅度和矢量图,将其标准化为其入射对应物,对于(b)𝛿 = 0(b)𝛿 = 0(无损耗),(c)𝛿 = 0.01,和(d)𝛿 = 0.1。这些数值结果表明,功率流的幅度在有损耗的EMNZ介质中表现出指数衰减。然而,归一化的矢量分布在耗散阻尼的情况下具有鲁棒性,并且在此处研究的参数范围内保留了涡度的不存在。所考虑的损失因素是NZI介质的超材料实现的现实性,包括色散波导和全dielectric光子晶体,以及一些最高质量的连续培养基,例如硅碳化硅(SIC),其特征在于𝜀 =𝑖=𝑖0.03。但是,基于掺杂的半导体的其他实现(例如基于掺杂的半导体)表现出更高的损失𝜀 = 𝑖0.2〜0.5。
摘要:本文介绍了一种有效监控活塞发动机飞行状态的方法。ECU(电子控制单元)可以确保飞行安全,避免部件和连接随机发生电子故障而出现紧急情况或紧急情况。通过添加可靠的数字监控系统和化油器自动校准,可以轻松在旧发动机上实现同样的效果。事实上,它们的可靠性比现代涡轴发动机低几个数量级。在配备 FADEC(全权数字电子控制)的现代发动机中,按下“开启”按钮时,将检查传感器和执行器。然后,CPU 将在启动阶段(发动机在未点火的情况下运转)启动。如果一切正常,发动机将启动,并执行启动后检查。在飞行过程中,ECU 将检查 CPU、传感器和执行器。因此,无需太多努力即可高度可靠地监控电子系统。传感器可以交叉检查发动机状况,并输出非常可靠的早期故障诊断。备件的统计数据对于监控应用、发出薄弱或不耐用的部件和故障模式信号具有无价的价值。这是汽车活塞发动机转换为飞机用途的另一个优势。
高速列车已成为世界各地交通运输系统不可或缺的一部分。随着速度的提高,列车周围区域会产生非常高的速度,称为滑流。过去几十年来,人们进行了实验研究来研究这些现象的影响。滑流速度是使用放置在轨道上行驶的真实列车和在移动模型装置和旋转轨道装置等装置上运行的模型列车附近的风速计测量的。但是,大多数这些研究的成本都相当高。本论文的目的是找到一种测量滑流的替代方法。分离涡模拟用于模拟 ETR500 高速列车 1:15 比例模型周围的流动,其配置不同,类似于在轨道和风洞中进行的测试。将模拟结果与在都灵-诺瓦拉高速线上进行的实验测试获得的数据进行了比较。还进行了风洞测试以验证 CFD 数据。从结果得出结论,可以使用在列车前方设置滑动地板的风洞装置来确定列车产生的滑流速度是否在 TSI 标准规定的限值内。
高速列车已成为世界各地交通运输系统不可或缺的一部分。随着速度的提高,列车周围区域会产生非常高的速度,称为滑流。过去几十年来,人们进行了实验研究来研究这些现象的影响。滑流速度是使用放置在轨道上行驶的真实列车和在移动模型装置和旋转轨道装置等装置上运行的模型列车附近的风速计测量的。但是,大多数这些研究的成本都相当高。本论文的目的是找到一种测量滑流的替代方法。分离涡模拟用于模拟 ETR500 高速列车 1:15 比例模型周围的流动,其配置不同,类似于在轨道和风洞中进行的测试。将模拟结果与在都灵-诺瓦拉高速线上进行的实验测试获得的数据进行了比较。还进行了风洞测试以验证 CFD 数据。从结果得出结论,可以使用在列车前方设置滑动地板的风洞装置来确定列车产生的滑流速度是否在 TSI 标准规定的限值内。
多年来,大气湍流一直是物理学和工程学领域的研究热点。当激光束在大气中传播时,它会受到散射、吸收和湍流等不同光学现象的影响。大气湍流效应是由折射率的变化引起的。不同大小的涡流会影响光波在大气中的传播。折射率的这些变化会导致传播的激光束产生不同的变化,如光束漂移、光束扩散和图像抖动。所有这些影响都会严重降低光束质量 (M 平方) 并降低系统在某些应用中的性能效率,包括自由空间光通信、激光雷达-激光雷达应用和定向能武器系统 [1- 5]。传统上,湍流由 Kolmogorov 模型类型定义。Kolmogorov 谱的幂律值为 11/3,用于描述高斯分布 [6]。许多光谱具有特定的内尺度和外尺度,如 Tatarskii 光谱、von Karman 光谱、Kolmogorov 光谱和广义修正光谱 [7]。本研究采用广义修正大气光谱模型。我们通过数值和分析方法执行高斯激光光束在不同传播距离下的传播行为。此外,我们还研究了一些参数对光束传播的影响。讨论了所有模拟结果,并将其与文献中的结果进行了比较。
Al 中的自旋寿命。(c)由不同自旋轨道耦合强度参数(b 分别为 0.1、0.02 和 0.005)的隧道磁阻 (TMR) 比推导的自旋寿命的温度依赖性。(d)超连续磁共振涡旋介导的自旋电流示意图。上平面:自旋角动量和超连续磁共振涡旋涡度之间的嬗变。下图:磁性绝缘体 (MI)/SC/MI 结构中通过超连续磁共振涡旋液体进行自旋传输的理论预测。(e)用于探测磁振子和涡旋之间耦合的 Nb/Py 异质结构的器件结构。金电极用作天线来激发和检测 Py 中的磁振子自旋波。(f)归一化的磁振子自旋波传输图与平面外磁场和自旋波频率的关系。两个带隙特征与第一和第二布拉格散射条件吻合得很好。 (bc) 改编自参考文献 [8],经许可,版权归 Springer Nature 2010 所有。(d) 改编自参考文献 [9],经许可,版权归 APS 2018 所有。(ef) 改编自参考文献 [41],经许可,版权归 Springer Nature 2019 所有。
摘要:在计算中包括海面电流,可以通过负风能输入来潮湿的中尺度涡流,并且具有涡流寿命的潜在影响。在这里,我们研究了斜力斜体反气旋涡流,但要采用理想化的高分辨率高分辨率数值模型,遭受绝对(无海面电流)和相对(包括海面电流)的风应力。这项研究的结果表明,相对风应力耗散表面平均动能(MKE),并且还通过Ekman泵送整个水柱产生额外的垂直运动。风应力卷曲 - 诱导的Ekman泵送产生额外的巴罗诊所转化(平均平均动能电位),发现通过增加深MKE来抵消表面MKE的阻尼。对相对风应力的缩放分析 - 诱导的斜压转化和相对风应力阻尼确定这些数值的结果,表明额外的能量转换抵消了相对风应力阻尼。更重要的是,发现风应力卷曲 - 诱导的Ekman泵送可以改变表面电势涡度梯度,从而导致涡流的早期不稳定。因此,涡流不稳定性和最终的涡流衰变的开始是在模拟中以相对风应力的较短时间尺度进行的。
大涡模拟 (LES) 已用于研究飞机编队后方 10 分钟内的远场四涡尾流涡旋演变情况。在编队飞行场景中,尾流涡旋行为比传统的单架飞机情况复杂、混乱且多样,并且非常敏感地取决于编队几何形状,即两架飞机的横向和垂直偏移。尽管在各种编队飞行场景中尾流涡旋行为的个案变化很大,但涡旋消散后的最终羽流尺寸通常与单架飞机场景有很大不同。羽流深约 170 至 250 米,宽约 400 至 680 米,而一架 A350/B777 飞机将产生 480 米深和 330 米宽的羽流。因此,编队飞行羽流没有那么深,但它们更宽,因为涡流不仅垂直传播,而且沿翼展方向传播。两种不同的 LES 模型已被独立使用,并显示出一致的结果,表明研究结果的稳健性。值得注意的是,二氧化碳排放只是航空气候影响的一个因素,还有其他几个因素,如凝结尾迹、水蒸气和氮氧化物的排放,这些都会受到编队飞行的影响。因此,我们还强调了年轻编队飞行凝结尾迹与经典凝结尾迹在冰微物理和几何特性方面的差异