结果:本分析共纳入 64 名患者。中位无进展生存期 (mPFS) 为 5.6(4.6 – 6.6)个月。62.5% 的患者在接受伊奈替单抗治疗前接受过两线或两线以上治疗。与伊奈替单抗联合使用的最常见化疗和抗 HER2 方案分别是长春瑞滨 (60.9%) 和吡咯替尼 (62.5%)。接受伊奈替单抗加吡咯替尼加长春瑞滨治疗的患者获益最多 (p=0.048),中位无进展生存期为 9.3(3.1 – 15.5)个月,客观缓解率为 35.5%。对于接受吡咯替尼治疗的患者,伊奈替单抗加长春瑞滨加吡咯替尼药物的中位无进展生存期为 10.3(5.2 – 15.4)个月。治疗方案(伊奈替单抗加长春瑞滨加吡咯替尼 vs. 其他治疗药物)和内脏转移(是 vs. 否)是 PFS 的独立预测因素。接受伊奈替单抗加长春瑞滨加吡咯替尼治疗的内脏转移患者的中位 PFS 为 6.1(5.1 – 7.1)个月。伊奈替单抗的毒性是可以耐受的,最常见的 3/4 级不良事件是白细胞减少症(4.7%)。
天然产物Eugenol 1用作合成化合物4的起始材料(方案1)。所有中间体2 - 3均使用文字中提到的技术产生,并带有较小的Modi cations。28化合物1与乙酸溴乙酸酯在丙酮中存在无水钾含碳酸盐中的碳酸盐中,从而产生2-(4-酰基-2-甲氧氧基)乙酸乙酸乙酯2,然后用乙醇中的2--乙醇中的2-----------------甲氧氧基)在2--(4---乙醇中)的2------------甲基乙酸盐反应。 90%的年龄中有3个。所有用于制备目标分子的介体都通过光谱数据(例如NMR和FTIR)进行了。在乙醇中,化合物3和2,5-己二酮之间的凝结反应在96%的年代中均为2-(4-酰基-2-甲氧基氧基) - N-(2,5-二甲基-1 H-吡咯-1-吡咯-1-吡咯-1-吡咯-1-吡咯-1-基)乙酰胺4。通过NMR(1 H&13 C),FTIR和XRD光谱分析对这种凝结进行了限制。FTIR频谱在1710 cm -1和3460 cm -1处显示出明显的信号,分别分别是特征C] O的存在和NH功能。的确,产品4的1 H NMR揭示了以1.91 ppm((CH 3)2)的屏蔽单元的外观,其质子具有与吡咯环相关的质子。尽管吡咯环的两个对称质子存在于5.59 ppm((CH)2)的化学含中,但由于它们的对称性,它们仅给出一个信号。还可以指出,在10.8 ppm(NH)处的未遮盖单线的外观也被指出。实验结果在表1中报告,而不对称单元如图1带有原子编号方案。在13 C NMR光谱中的10.2、103.59和127.3 ppm处的峰值分别归因于(CH 3)2与吡咯环相连的(CH 3)2,CH - CH与第三级碳和c – N链接到吡咯并碳环的Quaternary Carbons。在100 k的温度下,记录了化合物4、2-(4-酰基-2-甲氧基氧基)-n-(2,5-二甲基-1 h-pyrrol-1-基)乙酰胺的X射线强度数据,该乙酰氨酸含量为
赖氨酸n-吡咯酚,一种翻译后修饰,将赖氨酸残基转化为Nε-吡咯-l赖氨酸,将电负性特性授予蛋白质,从而使它们模仿DNA。载脂蛋白E(APOE)已被鉴定为吡咯蛋白(pyRP)的可溶受体,并且已经在ApoE -DeEtient(APOE - / - )高脂小鼠中观察到了加速的赖氨酸N-吡咯烷。然而,pyRP积累对APOE缺乏症的影响对先天免疫反应的影响尚不清楚。在这里,我们研究了已知的B-1A细胞,这些细胞已知,这些细胞从apoE中含有的小鼠中产生了种系编码的免疫球蛋白M(IgM),并鉴定出特定的细胞群,该细胞群特异性地产生了针对PYRP和DNA的IgM抗体。我们证明了与ApoE的腹膜腔中IgM产生有关的B-1A细胞的扩展 - / - < / div>
完整作者列表: 隋一鸣;华盛顿大学,材料科学与工程系 刘超峰;华盛顿大学,材料科学与工程系 邹佩超;清华大学,清华深圳国际研究生院能源与环境学部 詹厚超;清华大学,清华深圳国际研究生院能源与环境学部 崔远征;清华大学,清华深圳国际研究生院能源与环境学部 杨程;清华大学,清华深圳国际研究生院能源与环境学部 曹国忠;华盛顿大学,材料科学与工程系
Hammett 对功能化二酮吡咯并吡咯 (DPP) 体系中取代基效应的分析:光电特性和分子内电荷转移效应 Gabriel Monteiro-de-Castro; a Itamar Borges Jr. a,b,* Instituto Militar de Engenharia (IME),Praça Gen. Tibúrcio 80,里约热内卢,RJ,22290-270,巴西。 a Departamento de Química, IME b Programa de Pós-Graduação em Engenharia de Defesa, IME * 电子邮件:itamar@ime.eb.br 摘要 二酮吡咯并吡咯 (DPP) 系统在不同的有机电子器件中具有广阔的应用前景。在这项工作中,我们研究了 20 种不同的取代基对 DPP 基衍生物作为有机光伏 (OPV) 器件中的供体 (𝐷) 材料的光电特性的影响。为此,我们采用了 Hammett 理论,该理论量化了给定取代基的电子供体或吸电子特性。基于机器学习 (ML) 的 𝜎 # , 𝜎 $ , 𝜎 #
HER2+/HR+乳腺癌是一种特殊分子类型的乳腺癌,现有治疗方法易产生耐药,需要“精准治疗”。吡咯替尼是一种泛HER-1激酶抑制剂,可用于HER2阳性肿瘤,而SHR6390是一种CDK4/6抑制剂,可以抑制ER+乳腺癌细胞周期进展和癌细胞增殖。在癌细胞中,HER2和CDK4/6信号通路可能不是冗余的,SHR6390与吡咯替尼联合抑制两条通路可能对HER2+/HR+乳腺癌产生协同抗癌作用。在本研究中,我们确定了双药联合使用的协同作用及其潜在的分子机制。我们发现SHR6390和吡咯替尼联合使用在体外协同抑制了HER2+/HR+乳腺癌细胞的增殖、迁移和侵袭。两药联合应用可诱导HER2+/HR+乳腺癌细胞株G1/S期阻滞及凋亡;两药联合应用可延长异种移植模型体系中肿瘤复发的时间。通过二代RNA测序技术及吡咯替尼耐药细胞株富集分析发现,FOXM1与诱导HER2靶向治疗耐药有关。在HER2+/HR+乳腺癌细胞株中,两药联合应用可进一步降低FOXM1磷酸化,从而在一定程度上增强抗肿瘤效果。这些结果提示SHR6390与吡咯替尼联合应用可能通过调控FOXM1来抑制HER2+/HR+乳腺癌的增殖、迁移和侵袭。
摘要:新型的二氢 - 吡咯-2-一种化合物(具有双磺酰胺基团)是通过使用三氟乙酸作为催化剂的一锅三分之二方法合成的。使用密度功能理论(DFT)和冷凝的福克函数的计算分析探索了结构 - 反应性关系。对人碳酸酯同工型(HCA I,II,IX,XII)的评估显示出有效的抑制作用。 广泛表达的胞质HCA I被抑制在一系列浓度(K I 3.9 - 870.9 nm)中。 HCA II(也是胞质的)也表现出良好的抑制作用。 值得注意的是,所有化合物有效地抑制了与肿瘤相关的HCA IX(K I 1.9 - 211.2 nm)和HCA XII(低纳米尔)。 对MCF7癌细胞的生物学评估强调了该化合物的能力与阿霉素相结合,从而显着影响肿瘤细胞活力。 这些发现强调了癌症治疗中合成化合物的潜在治疗相关性。 ■简介对人碳酸酯同工型(HCA I,II,IX,XII)的评估显示出有效的抑制作用。广泛表达的胞质HCA I被抑制在一系列浓度(K I 3.9 - 870.9 nm)中。HCA II(也是胞质的)也表现出良好的抑制作用。值得注意的是,所有化合物有效地抑制了与肿瘤相关的HCA IX(K I 1.9 - 211.2 nm)和HCA XII(低纳米尔)。对MCF7癌细胞的生物学评估强调了该化合物的能力与阿霉素相结合,从而显着影响肿瘤细胞活力。这些发现强调了癌症治疗中合成化合物的潜在治疗相关性。■简介
6 s cm -1在准备好的聚合物薄膜中。获得的表征结果与PPY/DBSA/BN复合材料进行的NH 3 3气体传感器测量非常吻合。发现两者之间的线性相关系数为r 2 = 0.9916,表明关系很强。此外,PPY/DBSA/BN薄膜显示出5.8 ppm的检测低限(LOD),超过了NH 3气体的OSHA阈值。这表明传感器对痕量的NH 3气体高度敏感。此外,PPY/DBSA/BN薄膜表现出非凡的可重复性性,最多可用于10个循环,而无需显着降低性能。在存在常见干扰物种的情况下,传感器还表现出对NH 3气体的选择性。此外,它表现出长期稳定性,并在7天内保持其性能。提议的自组装气体传感器在室温下检测NH 3气体时表现出了显着的性能,使其成为工业应用的有前途的候选人。
抽象的临床前和临床研究表明,除具有滥用潜力外,精神刺激物还可能引起脑功能障碍和/或神经毒性作用。由精神刺激物引起的中央毒性可能构成严重的健康风险,因为这些物质的娱乐使用在年轻人和成年人中正在上升。本评论概述了2018年至2023年之间进行的最新研究概述,重点是苯丙胺,可卡因,甲基苯丙胺,3,4-甲基甲基甲基甲基甲基苯丙胺,甲基甲基苯胺和NICETINE,NICETINE,NICETINE,甲基苯基甲基甲甲基苯二甲胺,甲基苯丙胺,3,4-甲基苯甲胺,3,4-甲基苯丙胺,3,4-甲基苯丙胺,3,4-甲基苯丙胺,3,4-甲基苯丙胺引起的脑功能障碍和神经毒性作用。详细阐明了基于精神刺激诱导的脑功能障碍和神经毒性的因素和机制,对于理解使用精神刺激物来用于娱乐和/或治疗用途的个人中可能发生的急性和持久的有害脑作用至关重要。关键词:3,4-甲基二甲基甲基苯丙胺;苯丙胺;咖啡因;细胞培养;可卡因;甲基苯丙胺;哌醋甲酯;神经毒性;尼古丁
[1] Nam Sh,Lee J,A YJ。Euglena物种作为土壤生态毒性评估的生物指导者的潜力。Comp Biochem Physiol C Toxicol Pharmacol,2023,267:109586 [2] Proctor MS,Sutherland GA,Canniffe DP等。(杆菌)叶绿素生物合成的末端酶。r Soc Open Sci,2022,9:211903 [3] Solymosi K,Mysliwa-Kurdziel B.叶绿素及其在食品工业和医学中使用的衍生物。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。 通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。 分子,2023,28:5344 [5] Sun D,Wu S,Li X等。 衍生自微藻的叶绿素的结构,功能和潜在药物作用。 Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。 红移的叶绿素。 Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。 Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Mini Rev Med Chem,2017,17:1194-222 [4] Martins T,Barros AN,Rosa E等。通过叶绿素和叶绿素丰富的农业食品增强健康益处:全面评论。分子,2023,28:5344 [5] Sun D,Wu S,Li X等。衍生自微藻的叶绿素的结构,功能和潜在药物作用。Mar Drugs,2024,22:65 [6] Chen M,Schliep M,Willows Rd等。红移的叶绿素。Science,2010,329:1318-9 [7] Chen M.叶绿素修饰及其在氧光合物中的光谱扩展。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。 光化学超出了含有叶绿素F的光系统的红色极限。 Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。 Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。 修饰的四吡咯的生物合成 - 生命的颜料。 J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。 第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Annu Rev Biochem,2014,83:317-40 [8]NürnbergDJ,Morton J,Santabarbara S等。光化学超出了含有叶绿素F的光系统的红色极限。Science,2018,360:1210-3 [9] Tanaka R,Tanaka A.高等植物中的四吡咯生物合成。Annu Rev Plant Biol,2007,58:321-46 [10] Bryant DA,Hunter CN,Warren MJ。修饰的四吡咯的生物合成 - 生命的颜料。J Biol Chem,2020,295:6888-925 [11] Robert D,Willows J,Clark Lagarias等。第21章四吡咯生物合成和信号传导(叶绿素,血红素和bilins)[m] //荷兰SK。Chlamydomonas Sourcebook(第三版)。剑桥:学术出版社,2023:691-731 [12] Tanaka R,Kobayashi K,Masuda T.拟南芥的Tetrapyrole代谢。拟南芥书,2011,9:145-85 [13] Brzezowski P,Richter AS,Grimm B.植物和藻类中四吡咯生物合成的调节和功能。Biochim Biophys Acta,2015年,1847年:968-85 [14] Wang P,JI S,GrimmB。植物四吡咯生物合成中代谢检查点的翻译后调节。J Exp Bot,2022,73:4624-36 [15] Zhao A,Fang Y,Chen X等。拟南芥谷氨酰基-TRNA还原酶及其刺激蛋白中的晶体结构。Proc Natl Acad Sci u S A,2014,111:6630-5 [16] Fang Y,Zhao S,Zhang F等。拟南芥谷氨酰基-TRNA还原酶(Glutr)形成带有流感和谷物结合蛋白的三元复合物。SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。 酶叶绿素生物合成中酶促光催化的结构基础。 自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。 的晶体结构SCI REP,2016,6:19756 [17] Zhang S,Heyes DJ,Feng L等。酶叶绿素生物合成中酶促光催化的结构基础。自然,2019,574:722-5 [18] Dong CS,Zhang WL,Wang Q等。