抽象流放物排放是闪电和高压技术中空气电力崩溃的主要模式。流媒体通道分支多次,这决定了发展的树状排放结构。理解这些分支结构对于描述闪电研究中的流媒体冠非常重要。我们使用3D流体模型模拟了空气中的阳性流媒体,其中将光电离作为一个离散和随机过程。分支的概率和形态与专用实验非常吻合。这表明光电离确实提供了触发分支的噪声,我们表明分支对光电离的量非常敏感。因此,我们的比较是Zheleznyak光电离模型的首次敏感测试之一,证实了其有效性。
我们考虑在较少目标数据异常数据的异常检测中转移学习的问题。尽管在传统平衡分类中广泛考虑了转移学习,但在异常检测中转移的问题和分类设置不平衡的问题较少。我们提出了一个通用的元算法,理论上显示以产生强大的保证。与异常分布的一系列变化,同时也适合实际实施。然后,我们研究了基于多层神经网络的这种一般元吻合的不同实例,并从经验上表明,它们在传统平衡分类设置(目前是唯一可用的解决方案)上的自然传递方法的表现优于传统传输方法的表现。
摘要。在最后一次脱气过程中研究巴塔哥尼亚冰盖(PIS)的撤退是一个重要的机会,可以理解在po区以外的冰盖如何响应温度和大规模大气循环的冰期变化。在最后一个冰川最大值(LGM)期间,智利湖区(CLD)在北部的北部PIS延伸,受到南部风(SWW)的影响,该风(SWW)强烈地模拟了该地区的水文和热预算。尽管在限制了该地区的冰川冰撤退的性质和时机方面的进展,但由于缺乏对过去的冰缘变化的地质限制,冰川历史的不确定性仍然存在。在缺乏冰川年表的情况下,冰盖模型可以为我们对脱气冰层撤退的特征和驱动因素提供重要的见解。在这里,我们使用冰盖和海平面系统模型(ISSM)来模拟PIS跨CLD的LGM和最后一次冰冰历史(450 m)。我们使用国家大气研究中心社区气候系统模型(CCSM3)Trace-21KA实验的气候输入进行了对最后一次脱气的短暂模拟。在LGM上,整个CLD的模拟冰范围与PIS ICE历史(Patice)最全面的重新构成非常吻合。与冰流变暖相吻合,在19 ka之后随后发生冰撤退,大规模冰撤退发生在18至16.5 ka之间。by 17 ka,CLD的北部自由冰,到15 ka时,冰只持续到高海拔,因为山地冰川和小冰盖。我们的模拟冰历史与帕特斯(Patice)在早期的冰冰撤退方面非常吻合,但在15 ka之后和之后有所不同,地质重建建议
负责该磁盘在PBS核心底部的突出。此突出与PSII的细胞质侧的孔非常吻合,并在PBS和PSII之间形成紧密相互作用(Chang等人2015; Krasilnikov等。2020)。考虑了PS II的近表面叶绿素的垂体层的厚度以及该突出所产生的间隙以及从PBS核心向类囊体膜暴露的无定形PBLCM回路,该模型最有可能提供的距离为42Å(Krasilnikov等。2020)在这里使用了从PBS到PS II的能量转移的机会。仅来自PBLCM的能量转移的功能的标准是根据计算确定并在实验中确定的转移时间的一致。
摘要。在此手稿中,已经提出了用于无线应用的紧凑型MIMO天线。提出的天线由F形散热器组成,中心的圆形插槽和底物另一侧的矩形接地平面。所提出的天线的总尺寸为48×48 mm2。天线设计为在两个频带上工作 - 1.5至2.3 GHz和3.7至4.2 GHz,分别为1.8 GHz和3.9 GHz。还可以通过使用各种参数(例如信封相关系数(ECC),多样性增益(DG),总主动反射系数(TARC)等来观察天线的多样性性能。ECC的值为0.02,显示了天线的良好多样性性能。为了验证模拟和测量结果,已制造了所提出的天线,并彼此吻合。
摘要:我们对 Mellor 近期提出的经验调整项进行了评论。调整项的目的是纳入表面集中动量的影响,调整显著提高了模拟速度剖面与测量速度剖面之间的可比性。我们发现,与常用的集中动量参数化方法相比,调整项中的集中动量被大大高估。高估的集中动量导致表面速度剪切更强,而这一剪切被波浪破碎引起的垂直混合部分抵消。如果同时减少调整和垂直混合的分数,模型结果也与测量速度剖面非常吻合。我们还讨论了一种包括垂直辐射应力梯度项的替代方法。该方法在给定的波浪条件下不表现出经验性或不确定性。
光与单个粒子相互作用会产生特定的散射图案。与基于单个光电二极管检测的传统光学 PM 传感器不同,我们测量附近图像传感器上散射特征的无透镜投影(投影距离为 1.5 毫米)。这使我们能够计数粒子并确定其大小和折射率。这些参数是通过图像处理并与计算 Lorenz-Mie 散射图案投影的辐射测量模型进行比较来检索的。我们描述了传感技术、该传感器的架构和制造以及特性结果,这些结果与我们基于理论的预测非常吻合。特别是,我们表明可以区分不同尺寸的校准颗粒(单分散聚苯乙烯乳胶球)。该传感器足够灵敏,可以检测到单个粒子,并且最小尺寸小于 1µm。
脱位密度。那些不同的方法不观察到相同类型的位错,即统计存储的位错(SSD)和/或几何必需的脱位(GND)。有些是直接测量技术,例如ECCI和TEM成像,而其他是非方向方法,即HR-EBSD和XRD测量。因此,提出了使用这四种技术在未变形和变形的双链钢上获得的测量值的定量比较。对于低变形,位错密度很小(成像方法相当性能,而XRD 1- 5×10 13 m - 2),测量值的不确定性水平高。HR-EBSD测量结果表明,结果与这些变形水平的其他方法非常吻合。对于较高的变形水平(上面的脱位密度),成像方法不再相关,因此1 - 3×10 14 m - 2
尺寸反射率直接方法的测量缺乏足够的灵敏度来测量激光方面的超低反射率。但是,在过去的二十年中已经开发了各种指导方法[5] [6] [7]。在这项工作中,采用了马里兰州大学[8]开发的自发发射转换(SET)方法。此方法通过将ASE光谱转换为信号组件与大多数噪声正交的傅立叶域,从而提供了高信号与噪声比(SNR)。图5显示了SET方法与TFCALC建模结果之间的比较。实验和理论在光谱的长波长部分中非常吻合。在较短的波长处延伸的差异被认为主要是由于ASE信号低,因此该区域的SNR差。