hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:在环境压力下的散装材料中的非常规超导性在分层酸奶和基于铁的家族外的3D过渡金属化合物中极为罕见。它主要与高度各向异性电子特性和准二维(2D)费米表面有关。迄今为止,基于CO的异国情调超导体的唯一已知示例是水合分层的钴酯,Na X COO 2·Y H 2 O,其超导性在Spin-1/2 Mott State附近实现。然而,这些材料中超导性的性质仍然是一个激烈争论的主题,因此,找到一类新的超导体将有助于揭开其非常规超导性的奥秘。在这里,我们报告了我们新合成的分层化合物Na 2 Cose 2 O的超导性在〜6.3 k处的发现,其中边缘共享的cose 6 cose cose 6 cose 2]层[Cose 2]层,具有完美的三角形三角形晶格。这是具有独特的结构和化学特性的第一个3D过渡金属氧源超导体。尽管其相对较低的t c,该材料表现出非常高的超导临界场,μ0h c2(0),远远超过了保利的顺磁性极限3-4。第一原理计算表明Na 2 Cose 2 O是负电荷转移超导体的罕见示例。■简介CO旋转中具有几何挫败感的这种含氧盐含量具有很大的潜力,作为实现非常规和/或高t C超导性的高度吸引人的候选人,超出了公认的Cu-和Fe基超导和基于FE的超导家族,并在低调的物理学和化学领域打开了一个新领域。
在物理和生命科学中具有广泛应用的固态量子传感器 ( 金刚石色心 -NV 氮原子空穴色心 ) ; 探索标准模型之外物理的量子传感器 ( 磁力仪和原子钟,囚禁的极性分子,自旋压缩,控制自旋退相 干,纠缠 ) ; 量子信息处理成为现实 ( 囚禁离子,约瑟夫森结 ) ; 增强型量子传感器的先进材料 ( 光晶格,固态量子缺陷,混合量子系统,拓扑材料 ) ; 用于暗区物理的量子传感器 ( 高 Q 值的射频或微波腔,基于超导干涉效应的高 Q 接收器 ) ; 基于原子干涉测量和光学原子钟的精密时空传感器 ( 量子纠缠 ( “压缩” ) 和量子控制 ( “动态解耦” )) 。
摘要:我们提出了有关电子 - 电子散射的实验发现,其中具有可调的费米波载体,相互晶格矢量和带隙。我们在双层石墨烯(BLG)和HBN的高弹性对齐异质结构中实现这一目标。在半满点附近,对这些设备的电阻的主要贡献是由Umklapp Electron-电子(UEE)散射产生的,这使得石墨烯/HBN Moire ́设备的电阻明显大于非对齐的设备的电阻(在此处禁止UEE)。我们发现,UEE散射的强度遵循Fermi能量的通用缩放,并且在非单声道上取决于超晶格时期。UEE散射可以用电场调节,并受BLG层极化的影响。它具有强粒子 - 孔不对称;当化学电位在传导带中的电阻明显低于在价带中的电阻,这使得电子方案在潜在应用中更实用。关键字:Umklapp散射,双层石墨烯,Moire ́超晶格,层极化,棕色 - Zak振荡
建筑结构的响应以多尺度运动学为特征,其复杂关系及其对工程荷载响应的影响仍未完全了解,因此需要进一步研究。更确切地说,缺乏能够提供多尺度数据的实验方法仍然是一个关键问题。本文介绍了对定向能量沉积制造的薄壁拉胀金属晶格进行的压溃试验的实验和数值分析。这项工作重点关注发生在 (a) 晶胞微观尺度和 (b) 对应于均质连续体的宏观尺度上的两尺度应变局部化。感兴趣的结构被定义为 2D 拉胀线框的挤压,并允许应用专门用于识别两个考虑尺度上的运动学的改进的数字图像相关方案。具体而言,通过跟踪晶格交叉的变形来研究微观运动学,而从虚拟晶胞角的运动推导出宏观应变。结果表明,晶格的整体弹塑性响应完全由特定位置的塑性铰链形成所驱动,从而导致特征变形模式,并最终导致相邻晶胞的集体行为。配套有限元计算与实验结果非常吻合,因此能够评估建模假设、晶胞几何形状、应变率和几何缺陷对建筑材料整体响应的影响。
设计及其应用,2,4 其中仅需最少的时间和资源即可快速评估 k 是关键。有很多可用的方法来评估 k 。基于第一性原理的非谐晶格动力学 (ALD) 是过去几年中广泛采用的方法。5 然而,使用大型超胞进行的太多力计算虽然可以部分重建,但非常耗时耗资源,6 这限制了其在高通量计算预测 k 中的实际应用。或者,使用经验模型评估 k 是一种更有效、更可行(计算成本更低)的方法,例如 Debye-Callaway 模型、7-9 Slack 模型、10 等。特别是,Slack 模型已广泛应用于评估许多材料的 k,11-13 显示出快速预测 k 和洞察热传输的潜在能力。14-16
报告了用于制造液晶弹性体(LCE)晶格的集成设计,建模和多物质的3D打印平台,并报告了具有空间可编程的nematic Director订单和本地组成的均质和异质布局。根据其组成拓扑结构,这些晶格在其各自的近视转变温度上方和下方循环时表现出不同的可逆形状变形转换。此外,可以证明,在评估所有LCE晶格设计的实验观察到的变形响应与模型预测之间存在良好的一致性。最后,建立了一个反设计模型,并证明了以预测的变形行为打印LCE晶格的能力。这项工作开辟了新的途径,用于创建构建的LCE晶格,这些晶格可能会在能量散落结构,微流体泵送,机械逻辑和软机器人技术中找到潜在的应用。
通过在光学晶格中实现强相关的费米模型来模拟高温超导材料,是模拟量子模拟领域的主要目标之一。在这里我们表明,局部控制和光学双层功能与空间分辨的测量相结合,创建了一种多功能工具箱,以研究镍和铜酸盐高温超导体的基本特性。一方面,我们提出了一种实施混合尺寸(混合)双层模型的方案,该模型已提议捕获加压双层镍的基本配对物理。这允许在当前晶格量子模拟机中长期实现具有远程超级传导顺序的状态。,我们展示了如何以部分粒子孔转换和旋转的基础访问连贯的配对相关性。另一方面,我们证明了对局部门的控制能够通过模拟具有有吸引力的相互作用的系统来观察D波配对顺序。最后,我们介绍了一种计划,以测量动量分辨的掺杂剂密度,从而提供了对固态实验互补的可观察物,这对于未来在丘比特中出现的神秘伪群阶段的研究特别感兴趣。
自旋向列相是经典液晶的磁性类似物,是同时具有液体和固体特性的第四种物质状态 1,2 。特别有趣的是价键自旋向列相 3-5 ,其中自旋量子纠缠形成多极序而不会破坏时间反演对称性,但其明确的实验实现仍然难以实现。在这里,我们在方晶格铱酸盐 Sr 2 IrO 4 中建立了自旋向列相,其在强自旋轨道耦合极限下近似实现伪自旋二分之一海森堡反铁磁体 6-9 。冷却后,在 TC ≈ 263 K 时转变为自旋向列相,其特点是从拉曼光谱中提取的静态自旋四极子磁化率发生发散,并伴随与旋转对称性自发破缺相关的集体模式的出现。四极序在 TN ≈ 230 K 以下的反铁磁相中持续存在,并通过共振 X 射线衍射与反铁磁序的干涉而直接观察到,这使我们能够唯一地确定其空间结构。此外,我们发现利用共振非弹性 X 射线散射在短波长尺度上完全破坏了相干磁振子激发,这表明反铁磁态中存在多体量子纠缠 10,11 。总之,我们的结果揭示了 Néel 反铁磁体背后的量子序,人们普遍认为它与高温超导机制密切相关 12,13 。
侧重于用于量子模拟的通用量子计算,并通过晶格规定的检查,我们引入了相当通用的量子算法,这些算法可以有效地模拟与多个(Bosonic和Fermionic)量子数的相关变化的某些类别的相互作用,该相互作用具有非构成功能系数的量子数。尤其是,我们使用单数值分解技术分析了哈密顿术语的对角线化,并讨论如何在数字化的时间进化运算符中实现已实现的对角线单位。所研究的晶格计理论是1+1个维度的SU(2)仪表理论,该理论与一个交错的费米子的一种味道结合在一起,为此提供了在不同的综合模型中进行完整的量子资源分析。这些算法被证明适用于高维理论以及其他阿贝尔和非阿布尔仪表理论。选择的示例进一步证明了采用有效的理论表述的重要性:显示出,使用循环,弦乐和强体自由度使用明确的计量不变的配方,可以模拟算法,并降低了与基于Angular-Momentum以及Schwinger-Momentum以及Schwinger-boson-boson Boson drefere的标准配方的成本。尽管挖掘仿真不确定,但循环 - 弦 - 弦 - 弦 - 弦 - 弦乐制剂进一步保留了非亚伯仪对称性,而无需昂贵的控制操作。这种理论和算法考虑因素对于量化与自然相关的其他复杂理论可能至关重要。