近几十年来,科学家掌握了由单个原子或分子层组成的二维晶体的创建。当这些晶体被轻微的偏移或旋转堆叠时,它们会产生大规模的干扰模式,称为Moiré模式。在这样的莫伊尔材料中,电子状态与莫伊尔图案的周期性一致,而不是原始晶体的周期性,对材料的电子特性产生了深远的影响。扭曲的双层石墨烯(TBG),其中两层石墨烯略有扭曲,是这种现象的主要例子。石墨烯是一种二维晶体,该晶体由排列在蜂蜜梳子晶格中的单层碳原子形成。当以特定的扭曲角度堆叠(称为魔法角度)时,TBG具有显着的特性,包括非常规超导性和低能量处的电子带结构的区别。Tarnopolsky,Kruchkov和Vishwanath [TKV19]引入了TBG的手性连续体模型,该模型通过精确地展示了Bloch-Floquet乐队,从而捕捉了TBG魔法角度的这种基本性质。在[bewz21,bewz22]中显示,由于扭曲角度非常小,几乎每个接近零能量的频段基本上都是为此模型的。在本文中,我们研究了Timmel和Mele [TM20]引入的上述手性模型的类似物,其中Moiré-type结构通过应用物理菌株在一个维度中占据一维。虽然此模型确实
1南部科学技术大学,深圳518055,中国2深圳科学与工程学院,南部科学技术大学,深圳518055,中国318055,3中,中国科学院,中国科学学院,中国3100次,中国科学院,中国科学院,中国科学院31次,科学,科学,科学。中国杭州5理论科学研究所,西湖大学,310024,杭州,中国杭州6吉安省量子材料的主要实验室,汉州科学院物理学系,杭州大学,310030,310030 Luruper Chaussee 149,22761汉堡,德国
添加剂制造(AM; 3D打印)是一种制造方法,它可以从数字设计文件中创建一个对象层。AM的最新进展现在还允许实现功能组件,除了早期采用原型制作。AM的主要优点是设计自由,它通过减法,形成性或织物制造方法促进了无法或实用的结构的使用。航空航天和医疗行业将AM纳入其生产链中,领导了。但是,天文学界的吸收速度很慢。2017年,一个多机构的欧洲欧洲团队开始在A2IM(添加剂天文学综合组件制造)上合作,这是一个较大的Opticon框架(天文学的光学红外协调网络)中的工作包,并由欧洲委员会委员会2020计划。Schnetler等人在此会议上介绍了A2IM工作包的概述。(2020),1在Farkas等人的论文中讨论的其他A2IM原型贡献。(2020),2 Vega等。(2020)3和Roulet等。(2020)。4本文介绍了针对纳米 - 卫星应用的轻量级镜像技术的A2IM原型开发。
摘要在本文中,研究了晶格结构的扭转和压缩行为。PLA(聚乳酸)材料用于组装中,并通过增材制造方法产生。在实验研究中,通过数字图像相关系统(DIC)系统研究了结构和晶格行为。使用三个不同的单元电池模型创建的模型,作为trunch八浓度,trunch八光线,带有节点的身体对角线以及两个不同的,70 mm和140毫米,总长度大小。通过压缩和扭转实验研究了单位细胞模型的影响,细胞大小对结构的强度进行了研究。获得了最大压缩应力和最大扭转,并提出了其变形。由于细胞模型的结构与扭转兼容,因此在带有节点细胞模型的身体对角线和140 mM的身体对角线中确定了最高最大扭矩。在Trunch Octa Light细胞模型和140 mM细胞长度中确定最高的压缩应力。
对乐队结构工程的不懈追求仍然是固态研究中的一个基本方面。在这里,我们精心构建了人工kagome的潜力,以生成和控制石墨烯的多个狄拉克带。这种独特的高阶潜在具有自然的多种组件,从而通过不同的潜在贡献来重建带结构。结果,每个以不同的分散体为特征的频带成分,响应人造电势的变化而在不同速度下的能量变化。因此,我们观察到多个狄拉克峰的光谱重量重新分布。此外,磁场可以有效地削弱超晶格效应并重新激活内在的狄拉克带。总的来说,我们实现了分散选择性带工程的积极性,该功能将大大提高频段设计的自由度。
难以区分的混淆(IO)已经取得了显着的理论进步,但是由于其高复杂性和效率低下,它仍然不切实际。最近的IO方案中的一种常见瓶颈是依赖自动化技术从功能加密(Fe)到IO中的依赖,该技术需要递归地调用每个输入位的Fe加密算法,这是为实用IO方案的重要障碍。在这项工作中,我们提出了钻石IO,这是一种新的基于晶格的IO结构,它用轻量级的矩阵操作代替了昂贵的递归加密过程。我们的构造在学习中被证明是安全的(LWE)和回避的LWE假设,以及我们在伪甲骨文模型中的新假设(All-Product LWE)。通过利用Agrawal等人引入的伪随机功能的Fe方案。(eprint'24)在非黑色盒子中,我们消除了对先前的Fe-io bootstrapping技术的依赖,从而显着降低了复杂性。剩下的挑战是将我们的新假设减少到LWE等标准的标准,进一步促进了实用和合理的IO构造的目标。
摘要:在通常的具有偶数格点的Su–Schrieffer–Heeger(SSH)模型中,由于边缘态同时占据两端点,因此不易实现左右边缘态之间的拓扑泵浦。本文提出一种方案,研究由一维超导传输线谐振器阵列映射的偶数尺寸周期调制SSH模型中的拓扑边缘泵浦。我们发现最初在第一个谐振器中准备的光子最终可以以一定的比例在两端谐振器处被观察到。两端谐振器处最终的光子分裂表明本超导电路有望实现拓扑分束器。进一步,我们证明了两端谐振器之间的分裂比例可以从1到0任意调节,这意味着实现可调拓扑分束器是潜在的可行性。同时,我们还证明了可调拓扑分束器由于零能量模式的拓扑保护而不受系统中加入的轻微无序的影响,并且发现可调拓扑分束器对全局现场无序的鲁棒性远高于对最近邻无序的鲁棒性。我们的工作极大地拓展了拓扑物质在量子信息处理中的实际应用,为拓扑量子光学器件的工程化开辟了一条新途径。
强化学习(RL)已成功地应用于各种在线调整任务,通常优于传统优化方法。但是,无模型的RL算法通常需要大量的样式,训练过程通常涉及数百万个相互作用。由于需要重复此耗时的过程来为每个新任务培训基于RL的控制器,因此它在在线调整任务中更广泛地应用构成了重大障碍。在这项工作中,我们通过扩展域随机化来训练一般的晶格 - 反应政策来应对这一挑战。我们专注于线性加速器中的共同任务:通过控制四极杆和校正磁体的强度来调整电子束的横向位置和尺寸。在训练期间,代理与磁铁位置随机分配的环境相互作用,从而增强了训练有素的策略的鲁棒性。初步结果表明,这种方法使政策能够概括和解决不同晶格部分的任务,而无需进行额外的培训,这表明有可能开发可转移RL的代理。这项研究代表了迈向快速RL部署的第一步,并为加速器系统创建了晶格 - 不合稳定的RL控制器。
带有线性电子色散的材料通常具有高载体迁移率和异常强的非线性光学相互作用。在这项工作中,我们研究了一种此类材料的(THz)非线性动力学HGCDTE,具有电子带分散体的高度依赖于温度和化学计量。我们展示了带隙,载体浓度和带状形状如何共同确定系统的非线性响应。在低温下,齐纳尔隧道的载体产生占主导地位,以减少整体传输的降低。在室温下,quasiballistic电子动力学驱动最大的观察到的非线性光学相互作用,从而导致透射率增加。我们的结果证明了这些非线性光学特性对电子分散和载体浓度的微小变化的敏感性。
纠缠熵表征了多颗粒的相关性,并揭示了开放量子系统的关键特征。但是,在非弱者系统中探索纠缠的实验实现面临挑战。并行,量子步道提供了研究非炎性物理学的潜在机制的可能性,其中包括特殊点,非铁皮皮肤效应和非Blloch相变。不幸的是,这些研究仅参与并广泛关注单个粒子的行为。在这里,我们提出并在实验中实现了在工程的非热光子晶格中的两个无法区分的光子的量子步行。我们已经成功地观察到了量子行动的单向行为,远离皮肤效应引起的边缘。此外,我们通过实验揭示了由非铁症系统中皮肤效应引起的纠缠的抑制。我们的研究可能有助于对远离热平衡的开放量子多体系统的纠缠深入了解。