达卡大学药学学院,达卡1000号,孟加拉国B研究系植物生物学与生物技术系,洛约拉学院,伦巴卡卡姆,钦奈,泰米尔纳德邦,印度泰米尔纳德邦,印度印度哥伦比亚省BGC Trust University bgc University consectian c and Trocention bgc Trocention bgc Trocention c。 Izatnagar研究所,Bareilly,243122,印度北方邦E e Mawlana Bhashani科学与技术大学药学系,Santosh,Santosh,Tangail,1902年,孟加拉国,孟加拉国,牙科和实验性养育研究系,牙科,卫生学院牙科,卫生学院,szeged szeged Secret and arthh hungard sekeged Informance and Hungary Secret and Hungary Secret and Hungary Secrety and Hungary Secret and Hungary Secret and arther secred Grenhh Hungard secred and arther secred and。孟加拉国州立大学巴基斯坦H Peshawar,孟加拉国州立大学,达卡省萨特马吉路77号,达卡,孟加拉国1205,孟加拉国I天然产品系研究,Koirala生物技术研究所,生物技术研究所达卡大学药学学院,达卡1000号,孟加拉国B研究系植物生物学与生物技术系,洛约拉学院,伦巴卡卡姆,钦奈,泰米尔纳德邦,印度泰米尔纳德邦,印度印度哥伦比亚省BGC Trust University bgc University consectian c and Trocention bgc Trocention bgc Trocention c。 Izatnagar研究所,Bareilly,243122,印度北方邦E e Mawlana Bhashani科学与技术大学药学系,Santosh,Santosh,Tangail,1902年,孟加拉国,孟加拉国,牙科和实验性养育研究系,牙科,卫生学院牙科,卫生学院,szeged szeged Secret and arthh hungard sekeged Informance and Hungary Secret and Hungary Secret and Hungary Secrety and Hungary Secret and Hungary Secret and arther secred Grenhh Hungard secred and arther secred and。孟加拉国州立大学巴基斯坦H Peshawar,孟加拉国州立大学,达卡省萨特马吉路77号,达卡,孟加拉国1205,孟加拉国I天然产品系研究,Koirala生物技术研究所,生物技术研究所
柑橘溃疡病影响柑橘生产。该病由柑橘黄单胞菌(Xcc)引起。先前的研究证实,在 Xcc 感染期间,转录激活因子样效应物 (TALE) PthA4 会从病原体转移到宿主植物细胞中。PthA4 与溃疡病易感基因 LOB1(EBE PthA4 -LOBP)启动子区中的效应物结合元件 (EBE) 结合,激活其表达,随后引起溃疡症状。之前,采用 Cas12a/CBE 共编辑方法破坏高度纯合的柚子的 EBE PthA4 -LOBP。然而,大多数商业柑橘品种都是杂合杂交种,更难产生纯合/双等位基因突变体。在这里,我们采用 Cas12a/CBE 共编辑方法来编辑 Hamlin(Citrus sinensis)的 EBE PthA4 -LOBP,这是一种在世界范围内种植的商业杂合柑橘品种。构建了二元载体 GFP- p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1,并证明其可通过 Xcc 促进的农杆菌素过滤在 Hamlin 叶片中发挥作用。该构建体允许通过 GFP 选择无转基因再生体,编辑 ALS 以生成抗氯磺隆再生体作为基因组编辑的选择标记,这是通过 nCas9-mPBE:ALS2:ALS1 瞬时表达 T-DNA 的结果,并通过 ttLbCas12a 编辑感兴趣的基因(即本研究中的 EBE PthA4 -LOBP),从而产生无转基因柑橘。共产生了 77 株幼苗。其中 8 株幼苗为转基因植株(#Ham GFP 1 - #Ham GFP 8),4 株幼苗为非转基因植株(#Ham NoGFP 1 - #Ham NoGFP 4),其余为野生型。在 4 株非转基因幼苗中,三个品系(#Ham NoGFP 1、#Ham NoGFP 2 和 #Ham NoGFP 3)含有 EBE pthA4 的双等位基因突变,一个品系(#Ham NoGFP 4)含有 EBE pthA4 的纯合突变。我们在 C. sinensis cv. Hamlin 中实现了 EBE PthA4 – LOBP 的 5.2% 非转基因纯合/双等位基因突变效率,而之前研究中柚子的突变效率为 1.9%。重要的是,存活下来的 4 株无转基因植株和 3 株转基因植株均能抵抗柑橘
单核苷酸多态性是最常见的遗传变异类型,但这些变异如何有助于复杂表型的适应仍不清楚。实验进化和全基因组关联研究表明,PPAR γ 同源物 Eip75B 的变异与果蝇 (Drosophila melanogaster) 的寿命和生活史差异有关。使用 RNAi 敲低,我们首先证明成年果蝇中 Eip75B 表达的降低会影响寿命、产卵率和卵量。然后,我们通过应用两种互补方法测试了 Eip75B 顺式调控域内自然发生的 SNP 的影响:使用果蝇遗传参考面板的品系的孟德尔随机化方法,以及使用精确的 CRISPR/Cas9 诱导基因组编辑的等位基因替换。我们的实验表明,这种天然多态性对繁殖力和卵到成虫的生存能力具有显着的多效性影响,但对寿命或其他生活史特征没有影响。我们的研究结果在核苷酸水平上提供了罕见的功能验证,并确定了影响适应性和生活史适应性的天然等位基因变异。
简单总结:草鱼Ctenopharyngodon idellus是我国重要的淡水养殖硬骨鱼类,年产量达5,533,083吨,但由草鱼呼肠孤病毒(GCRV)引起的出血病严重制约了草鱼的养殖。为了更好地控制草鱼出血病,基于抗病毒免疫分子标记的抗性草鱼品系的培育是一种潜在的解决方案。然而,草鱼抗GCRV感染的分子基础仍然很大程度上未知,大大限制了抗出血病草鱼的培育。鉴于三部分基序蛋白(TRIM)在动物抗病毒免疫中的重要性,我们利用隐马尔可夫模型生物序列分析软件(HMMER)和SMART对草鱼基因组中的TRIM进行鉴定,并分析其基因位点、结构和进化特征。我们还尝试基于两组转录组揭示草鱼在GCRV感染过程中的抗病毒TRIM及其介导的免疫过程。本研究为了解草鱼的TRIM和抗病毒免疫提供了信息。
花生根结线虫 (Meloidogyne arenaria; PRKN) 是一种微小的蛔虫,会捕食许多作物的根,包括栽培花生 ( Arachis hypogaea )。如果不采取缓解措施,这些蛔虫会导致种植者产量大幅下降。2020 年,PRKN 导致佐治亚州的花生作物价值下降了 3%。为了对抗这种害虫,20 世纪 90 年代,一种来自野生近缘种 (A. cardenasii ) 的强大抗性基因被渗入花生中。基因研究表明,这种基因渗入覆盖了栽培花生 A09 染色体的 ~92%。研究还发现,基因渗入的上部产生强抗性,而下部产生中等抗性。除此之外,人们对造成抗性的基因的确切位置知之甚少。本研究的目的是对重组花生品系进行 PRKN 温室测定。希望这些试验的结果能够进一步加深对这种基因渗入的了解,从而帮助育种者培育出具有稳定和强大抗性的优良品种。
在过去的 15 年中,科学界逐渐意识到已发表的研究普遍缺乏可重复性,尤其是动物研究。据估计,36% 的临床前研究成本花在了不可重复的实验上,原因是所用试剂和材料(包括动物)的错误(Freedman 等人,2015 年)。科学文献中报道的研究资源(包括模型生物,例如转基因小鼠品系)通常缺乏关键细节,因此研究无法重复(Percie du Sert 等人,2020 年)。再加上动物研究向临床研究的可转移性非常低(Leenaars 等人,2019 年),这些问题令人担忧,需要予以解决,以改进药物研究,并且出于明显的道德原因。造成这种情况的原因有多种,例如:缺乏统计功效分析、实验设计不佳、所用动物的健康状况等。本文将重点讨论小鼠的遗传质量。在使用疾病动物模型时,科学家需要考虑一系列因素
摘要 转基因技术已应用于多种物种,以在不同领域受益。随着自然鱼类资源的减少和世界人口的增加,转基因技术在商业鱼类物种上的应用受到更多关注,以减少水产养殖的局限性并满足日益增长的粮食需求。迄今为止,转基因技术已用于获得具有改良性状的稳定转基因品系。在水产养殖中,转基因技术提高了商业鱼类的生长率、抗寒性和抗病性,其中一种,AquAdvantage Salmon,甚至在北美上市。此外,还开发了转基因鱼来评估生态毒理学中化学物质对健康的影响,并为观赏渔业提供新的颜色变体选择。已经成功地进行了生成转基因鱼的不同方法,但仍需要进行一些开发。通过开发更有效的技术并告知消费者这些技术以减少他们的担忧,市场上可以出现更多的转基因鱼。本综述通过实例讨论了转基因鱼的应用领域,并概述了基因传递技术和转基因方法。
Abe, VY, & Benedetti, CE (2016). PthAs 在细菌生长和致病性的附加作用与柑橘溃疡病易感基因效应结合元件的核苷酸多态性有关。分子植物病理学,17 (8),1223---1236。http://dx.doi.org/10.1111/mpp.12359 Afroz, A., Chaudhry, Z., Rashid, U., Ali, GM, Nazir, F., Iqbal, J., & Khan, MR (2011). 表达 Xa21 基因的转基因番茄 ( Lycopersicon esculentum ) 品系对细菌性枯萎病的抗性增强。植物细胞、组织和器官培养,104 (2),227---237。 http://dx.doi.org/10.1007/s11240-010-9825-2 Almeida, RPP、de La Fuente, L.、Koebnik, R.、Lopes, JRS、Parnell, S. 和 Scherm, H. (2019)。应对新的全球威胁木霉 (Xylella fastidiosa)。植物病理学, 109(2), 172---174. http://dx.doi.org/10.1094/PHYTO-12-18-0488-FI Attílio, LB, Filho, F. de AA M, Harakava, R., Da Silva, TL, Miyata, LY, Stipp, LCL 和 Mendes, BMJ (2013)。遗传
隶属关系1。Johns Hopkins大学神经外科系,美国马里兰州巴尔的摩2。 斯坦福癌症研究所,斯坦福大学,加利福尼亚州斯坦福大学3。 加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学医学系4。 Helen Diller家庭综合癌症中心,加利福尼亚大学,加利福尼亚州旧金山,美国,美国5。 日本喀济泽州卡纳泽大学医院呼吸医学系。 6。 美国加利福尼亚州斯坦福大学斯坦福大学肿瘤学系7。 辐射肿瘤学系,华盛顿大学,圣路易斯,圣路易斯,美国密苏里州8。 美国加利福尼亚州斯坦福大学斯坦福大学神经外科系9. 日本神户的神户最低侵入性癌症中心医学肿瘤学系。 10。 日本托马索卡市医院医学肿瘤学系11. 日本科比科比大学药学学院药品系,日本科比12. 美国加利福尼亚州斯坦福大学斯坦福大学放射学系13。 美国加利福尼亚州斯坦福大学斯坦福大学神经病学系14。 加利福尼亚州斯坦福大学的斯坦福大学干细胞生物学与再生医学研究所15。 美国加利福尼亚州斯坦福大学斯坦福大学辐射肿瘤学系 *。 t azad,s nanjo和m jin对本文同样贡献。 相应的作者:Maximilian Diehn,M.D./ph.d。 美国斯坦福大学辐射肿瘤学系,美国斯坦福大学,电话:650-721-1550电子邮件:diehn@stanford.edu ash A. Ash A. Alizadeh,M.D./ph.d。Johns Hopkins大学神经外科系,美国马里兰州巴尔的摩2。斯坦福癌症研究所,斯坦福大学,加利福尼亚州斯坦福大学3。 加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学医学系4。 Helen Diller家庭综合癌症中心,加利福尼亚大学,加利福尼亚州旧金山,美国,美国5。 日本喀济泽州卡纳泽大学医院呼吸医学系。 6。 美国加利福尼亚州斯坦福大学斯坦福大学肿瘤学系7。 辐射肿瘤学系,华盛顿大学,圣路易斯,圣路易斯,美国密苏里州8。 美国加利福尼亚州斯坦福大学斯坦福大学神经外科系9. 日本神户的神户最低侵入性癌症中心医学肿瘤学系。 10。 日本托马索卡市医院医学肿瘤学系11. 日本科比科比大学药学学院药品系,日本科比12. 美国加利福尼亚州斯坦福大学斯坦福大学放射学系13。 美国加利福尼亚州斯坦福大学斯坦福大学神经病学系14。 加利福尼亚州斯坦福大学的斯坦福大学干细胞生物学与再生医学研究所15。 美国加利福尼亚州斯坦福大学斯坦福大学辐射肿瘤学系 *。 t azad,s nanjo和m jin对本文同样贡献。 相应的作者:Maximilian Diehn,M.D./ph.d。 美国斯坦福大学辐射肿瘤学系,美国斯坦福大学,电话:650-721-1550电子邮件:diehn@stanford.edu ash A. Ash A. Alizadeh,M.D./ph.d。斯坦福癌症研究所,斯坦福大学,加利福尼亚州斯坦福大学3。加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学医学系4。Helen Diller家庭综合癌症中心,加利福尼亚大学,加利福尼亚州旧金山,美国,美国5。 日本喀济泽州卡纳泽大学医院呼吸医学系。 6。 美国加利福尼亚州斯坦福大学斯坦福大学肿瘤学系7。 辐射肿瘤学系,华盛顿大学,圣路易斯,圣路易斯,美国密苏里州8。 美国加利福尼亚州斯坦福大学斯坦福大学神经外科系9. 日本神户的神户最低侵入性癌症中心医学肿瘤学系。 10。 日本托马索卡市医院医学肿瘤学系11. 日本科比科比大学药学学院药品系,日本科比12. 美国加利福尼亚州斯坦福大学斯坦福大学放射学系13。 美国加利福尼亚州斯坦福大学斯坦福大学神经病学系14。 加利福尼亚州斯坦福大学的斯坦福大学干细胞生物学与再生医学研究所15。 美国加利福尼亚州斯坦福大学斯坦福大学辐射肿瘤学系 *。 t azad,s nanjo和m jin对本文同样贡献。 相应的作者:Maximilian Diehn,M.D./ph.d。 美国斯坦福大学辐射肿瘤学系,美国斯坦福大学,电话:650-721-1550电子邮件:diehn@stanford.edu ash A. Ash A. Alizadeh,M.D./ph.d。Helen Diller家庭综合癌症中心,加利福尼亚大学,加利福尼亚州旧金山,美国,美国5。日本喀济泽州卡纳泽大学医院呼吸医学系。 6。 美国加利福尼亚州斯坦福大学斯坦福大学肿瘤学系7。 辐射肿瘤学系,华盛顿大学,圣路易斯,圣路易斯,美国密苏里州8。 美国加利福尼亚州斯坦福大学斯坦福大学神经外科系9. 日本神户的神户最低侵入性癌症中心医学肿瘤学系。 10。 日本托马索卡市医院医学肿瘤学系11. 日本科比科比大学药学学院药品系,日本科比12. 美国加利福尼亚州斯坦福大学斯坦福大学放射学系13。 美国加利福尼亚州斯坦福大学斯坦福大学神经病学系14。 加利福尼亚州斯坦福大学的斯坦福大学干细胞生物学与再生医学研究所15。 美国加利福尼亚州斯坦福大学斯坦福大学辐射肿瘤学系 *。 t azad,s nanjo和m jin对本文同样贡献。 相应的作者:Maximilian Diehn,M.D./ph.d。 美国斯坦福大学辐射肿瘤学系,美国斯坦福大学,电话:650-721-1550电子邮件:diehn@stanford.edu ash A. Ash A. Alizadeh,M.D./ph.d。日本喀济泽州卡纳泽大学医院呼吸医学系。6。美国加利福尼亚州斯坦福大学斯坦福大学肿瘤学系7。 辐射肿瘤学系,华盛顿大学,圣路易斯,圣路易斯,美国密苏里州8。 美国加利福尼亚州斯坦福大学斯坦福大学神经外科系9. 日本神户的神户最低侵入性癌症中心医学肿瘤学系。 10。 日本托马索卡市医院医学肿瘤学系11. 日本科比科比大学药学学院药品系,日本科比12. 美国加利福尼亚州斯坦福大学斯坦福大学放射学系13。 美国加利福尼亚州斯坦福大学斯坦福大学神经病学系14。 加利福尼亚州斯坦福大学的斯坦福大学干细胞生物学与再生医学研究所15。 美国加利福尼亚州斯坦福大学斯坦福大学辐射肿瘤学系 *。 t azad,s nanjo和m jin对本文同样贡献。 相应的作者:Maximilian Diehn,M.D./ph.d。 美国斯坦福大学辐射肿瘤学系,美国斯坦福大学,电话:650-721-1550电子邮件:diehn@stanford.edu ash A. Ash A. Alizadeh,M.D./ph.d。美国加利福尼亚州斯坦福大学斯坦福大学肿瘤学系7。辐射肿瘤学系,华盛顿大学,圣路易斯,圣路易斯,美国密苏里州8。 美国加利福尼亚州斯坦福大学斯坦福大学神经外科系9. 日本神户的神户最低侵入性癌症中心医学肿瘤学系。 10。 日本托马索卡市医院医学肿瘤学系11. 日本科比科比大学药学学院药品系,日本科比12. 美国加利福尼亚州斯坦福大学斯坦福大学放射学系13。 美国加利福尼亚州斯坦福大学斯坦福大学神经病学系14。 加利福尼亚州斯坦福大学的斯坦福大学干细胞生物学与再生医学研究所15。 美国加利福尼亚州斯坦福大学斯坦福大学辐射肿瘤学系 *。 t azad,s nanjo和m jin对本文同样贡献。 相应的作者:Maximilian Diehn,M.D./ph.d。 美国斯坦福大学辐射肿瘤学系,美国斯坦福大学,电话:650-721-1550电子邮件:diehn@stanford.edu ash A. Ash A. Alizadeh,M.D./ph.d。辐射肿瘤学系,华盛顿大学,圣路易斯,圣路易斯,美国密苏里州8。美国加利福尼亚州斯坦福大学斯坦福大学神经外科系9. 日本神户的神户最低侵入性癌症中心医学肿瘤学系。 10。 日本托马索卡市医院医学肿瘤学系11. 日本科比科比大学药学学院药品系,日本科比12. 美国加利福尼亚州斯坦福大学斯坦福大学放射学系13。 美国加利福尼亚州斯坦福大学斯坦福大学神经病学系14。 加利福尼亚州斯坦福大学的斯坦福大学干细胞生物学与再生医学研究所15。 美国加利福尼亚州斯坦福大学斯坦福大学辐射肿瘤学系 *。 t azad,s nanjo和m jin对本文同样贡献。 相应的作者:Maximilian Diehn,M.D./ph.d。 美国斯坦福大学辐射肿瘤学系,美国斯坦福大学,电话:650-721-1550电子邮件:diehn@stanford.edu ash A. Ash A. Alizadeh,M.D./ph.d。美国加利福尼亚州斯坦福大学斯坦福大学神经外科系9.日本神户的神户最低侵入性癌症中心医学肿瘤学系。10。日本托马索卡市医院医学肿瘤学系11.日本科比科比大学药学学院药品系,日本科比12.美国加利福尼亚州斯坦福大学斯坦福大学放射学系13。 美国加利福尼亚州斯坦福大学斯坦福大学神经病学系14。 加利福尼亚州斯坦福大学的斯坦福大学干细胞生物学与再生医学研究所15。 美国加利福尼亚州斯坦福大学斯坦福大学辐射肿瘤学系 *。 t azad,s nanjo和m jin对本文同样贡献。 相应的作者:Maximilian Diehn,M.D./ph.d。 美国斯坦福大学辐射肿瘤学系,美国斯坦福大学,电话:650-721-1550电子邮件:diehn@stanford.edu ash A. Ash A. Alizadeh,M.D./ph.d。美国加利福尼亚州斯坦福大学斯坦福大学放射学系13。美国加利福尼亚州斯坦福大学斯坦福大学神经病学系14。 加利福尼亚州斯坦福大学的斯坦福大学干细胞生物学与再生医学研究所15。 美国加利福尼亚州斯坦福大学斯坦福大学辐射肿瘤学系 *。 t azad,s nanjo和m jin对本文同样贡献。 相应的作者:Maximilian Diehn,M.D./ph.d。 美国斯坦福大学辐射肿瘤学系,美国斯坦福大学,电话:650-721-1550电子邮件:diehn@stanford.edu ash A. Ash A. Alizadeh,M.D./ph.d。美国加利福尼亚州斯坦福大学斯坦福大学神经病学系14。加利福尼亚州斯坦福大学的斯坦福大学干细胞生物学与再生医学研究所15。 美国加利福尼亚州斯坦福大学斯坦福大学辐射肿瘤学系 *。 t azad,s nanjo和m jin对本文同样贡献。 相应的作者:Maximilian Diehn,M.D./ph.d。 美国斯坦福大学辐射肿瘤学系,美国斯坦福大学,电话:650-721-1550电子邮件:diehn@stanford.edu ash A. Ash A. Alizadeh,M.D./ph.d。加利福尼亚州斯坦福大学的斯坦福大学干细胞生物学与再生医学研究所15。美国加利福尼亚州斯坦福大学斯坦福大学辐射肿瘤学系 *。t azad,s nanjo和m jin对本文同样贡献。相应的作者:Maximilian Diehn,M.D./ph.d。美国斯坦福大学辐射肿瘤学系,美国斯坦福大学,电话:650-721-1550电子邮件:diehn@stanford.edu ash A. Ash A. Alizadeh,M.D./ph.d。美国斯坦福大学斯坦福大学医学系肿瘤学系美国斯坦福大学斯坦福大学医学系肿瘤学系
Sekhar Boddupalli 博士 Green Venus LLC 1910 Fifth Street Davis, CA 95616 回复:确认基因组编辑鳄梨的监管状态 亲爱的 Boddupalli 博士, 感谢您 2020 年 6 月 11 日的来信(并于 2020 年 6 月 23 日修改),询问信中描述的鳄梨 (Persea americana Mill.) 产品是否属于 7 CFR 第 340 部分规定的受监管物品。您的信中描述了鳄梨的基因组编辑,这导致了被声称为机密商业信息 (CBI) 的表型。 2000 年的《植物保护法》 (PPA) 赋予美国农业部权力监督植物害虫或有害杂草的检测、控制、根除、抑制、预防或延缓蔓延,以保护美国的农业、环境和经济。根据《联邦法规》第 7 章第 340 条“引入通过基因工程改造或生产的植物害虫或有理由相信是植物害虫的生物和产品”,美国农业部对某些使用基因工程开发的生物的进口、州际运输和环境释放(田间测试)进行监管,这些生物是或有可能是植物害虫。根据法规,如果生物是使用 § 340.2 中列出的供体生物、受体生物或载体或媒介剂进行基因工程改造并符合植物害虫定义的生物,则该生物被视为受管制物品;或者该生物是未分类的生物和/或分类不明的生物,或者管理员确定该生物是植物害虫或有理由相信它是植物害虫。在您的信函中,您描述了您使用基因组编辑系统和方法(均声称为 CBI)在鳄梨中的目标基因(声称为 CBI)中创建双链断裂。未提供 DNA 修复模板。您声明该方法不使用任何植物害虫 DNA 序列。根据您在信函中做出的陈述,您的基因组编辑鳄梨本身不是植物害虫,并且没有植物害虫序列或外源 DNA 被整合到鳄梨的植物基因组中。与之前对类似询问信的回复一致,美国农业部不认为您的基因组编辑鳄梨品系受 7 CFR 第 340 部分的监管。虽然您的基因组编辑鳄梨品系不受 7 CFR 第 340 部分的监管,但其他监管机构可能适用。例如,您的鳄梨种子或植物的进口将受到适用的植物保护和检疫 (PPQ)、许可和/或检疫要求的约束。有关更多信息,如果您计划