孔雀鱼杂交育种和基因操作面临的挑战和限制包括近交衰退和遗传漂变的潜在风险。这些风险凸显了保持遗传多样性、实施有效的育种策略和利用分子工具减轻有限遗传变异的负面影响的重要性。还应仔细评估和解决伦理问题,包括动物福利和转基因孔雀鱼的潜在生态影响。养殖孔雀鱼杂交育种和基因操作的未来前景围绕着基因组方法的进步和分子技术的整合。全基因组测序和基因组选择为加强育种计划和操纵孔雀鱼基因组提供了令人兴奋的可能性。此外,探索和保护野生孔雀鱼种群的遗传多样性有助于培育更具弹性和多样性的养殖品系。
包含机密商业信息 尊敬的副局长 Juarez, CoverCress Inc. (CCI) 谨请求美国农业部动植物卫生检验局生物技术监管服务部 (BRS) 确认我们使用 CRISPR/Cas9 基因组编辑技术开发的基因组编辑菥蓂 (Thlaspi arvense) 植物品系的监管状态。CCI 正在开发可将菥蓂用作新型油籽作物的技术。菥蓂不在美国农业部联邦有害杂草名单上,在多个州被认定为作物。此请求描述了一种通过改变种子成分提高了产品质量的 CCI 产品。由此产生的植物将在 [ ] 基因中具有一个单一的基因修饰,该修饰通过过早的终止密码子导致基因功能丧失,这可以通过常规育种方法获得。
考虑到基因组编辑这一新型精准育种工具在解决农业长期存在的问题方面的潜在应用,培训研究人员如何在研究项目中有效部署基因组编辑极其重要。院士们也需要接触基因组编辑工具,以便为学生和年轻的研究学者授课。这个为期 10 天的培训计划涵盖基因组编辑的基础知识和细节、gRNA 设计和合成的实践经验、CRISPR/Cas 构建体的开发、将 gRNA 递送到植物细胞中、使用各种方法检测编辑的品系以及基因组编辑的生物安全监管方面。随着印度政府出台基因组编辑植物安全评估指南,印度的基因组编辑研究预计将在未来几年以更快的速度加速发展。
家畜的改良以满足人类的需求取决于遗传变异——既包括品种内的变异,也包括品种间的变异。遗传变异是动物育种者的基本材料。正是这种变异被用来塑造我们的家畜物种以满足我们的需求,而变异的丧失将限制满足不可预测的未来需求的可用选项。虽然品种内变异的丧失不断通过引入新的变异来抵消(Franklin,1981;Hill 和 Keightley,1988),但以品种间差异形式出现的遗传变异无法轻易再生。每个品种或品系都是突变和遗传漂变的产物,也是单独的适应和进化的产物,通常经过许多世纪,气候、地方性寄生虫和疾病、可用营养和人类强加的标准施加了不同的选择压力。因此,每个品种都包含一组独特的基因。
玉米具有双重作用,既是主要作物品种,又是遗传学中的模式物种。经过基因组编辑的糯玉米的特点是改性淀粉完全由支链淀粉组成,这是首批使用 CRISPR-Cas9 技术编辑的作物之一,获得了美国农业部批准种植和销售而无需进行转基因监督 (Waltz 2016)。这个例子说明了人们对 CRISPR-Cas9 技术在应用和基础研究中的潜力有着浓厚的兴趣。几十年来,淀粉行业一直很欣赏糯玉米,因为没有直链淀粉可以使淀粉更易于加工。虽然糯性状并不新颖,但 CRISPR-Cas9 技术可以在一到两代内直接在优良品系中产生糯性缺失,从而避免了传统基因渗入过程中耗时的回交和遗传拖累 (Cigan 等人 2017)。
CPDISR 为临床前功效和毒性动物研究以及利用为研究而采购的人体组织的转化研究提供支持。CPDISR 提供的综合服务包括:动物血液和其他生物流体分析;对各种实验动物的全套组织进行宏观和微观检查;对石蜡包埋和冷冻组织进行全面的组织学服务,包括针对动物和人体组织优化的特殊组织化学染色和免疫组织化学染色;为透射电子显微镜制备组织微阵列和网格;幻灯片数字化和定量图像分析;以及实践培训和咨询。CPDISR 比较病理学家是正常解剖学和生理学、背景年龄和品系/品种相关病变、传染性病原体、饲养实践和各种动物模型物种的实验模型方面的专家。在单个研究中识别和解释病变是结合动物模型的研究的重要组成部分。
正向育种是指在适当的环境中选择具有改良性能的重组体,它一直是作物产量随时间推移不断提高的驱动力。杂种优势的发现(杂种优势是指杂交品种相对于其自交系亲本而言具有改良性能)大大提高了杂交育种早期阶段的产量提高率(Sivasankar 等人,2012 年)。生物和非生物胁迫会降低产量,并造成潜在产量与实际产量之间的差距(Duvick,2005 年)。正向育种对于作物改良必不可少,尤其是对于复杂性状和胁迫环境而言,这是一个资源密集且耗时的过程。即使是由单个基因遗传的简单性状,也需要多次回交 (BC) 才能重建受体亲本的基因组。通过传统方法引入性状的另一个缺点是产量拖累,这个术语用来指供体亲本中不需要的基因导致的粮食产量降低,即使经过多次回交,这些基因仍然存在。由于这些基因之前未经过农艺性能选择,它们往往会降低转化品种的可收获产量。假设不进行选择且不抑制重组,则在 m 次回交后仍会保留下来的供体亲本基因数为 n ∗ d ∗ (1/2) m,其中 d 是供体与优良品系之间差异基因座的比例,n 是作物物种中的基因总数。例如,面包小麦有 ∼ 110 K 基因( Consortium et al., 2018 )。如果野生供体种质与轮回亲本在 30% 的基因座上存在差异,则经过四次回交后,转化品种中将继续存在一千多个来自供体亲本的基因。在差异很大的品系之间的杂交中,有限的重组可能会限制供体亲本的基因组片段被引入轮回亲本基因组的比例,但也可能对减少渗入的供体片段的大小构成挑战,从而增加连锁累赘的可能性(Hao et al., 2020)。标记可以帮助减少(但不能消除)BC1 阶段的供体亲本基因组片段。在资源有限的情况下开展的育种计划将
大豆是许多国家的主要作物,因其营养特性而被广泛用于从人类食品到动物产业。从经济角度来看,谷物链将大量资金转移到生产国的经济中。然而,与世界各地的其他农产品一样,大豆的最终产量可能会受到干旱等非生物环境压力的严重影响。由于豆荚和谷粒中的花朵可以最大限度地减少缺水造成的损害,研究人员一直致力于了解与开花过程相关的基因及其相互作用。本文介绍了一篇专门介绍大豆开花过程及其基因网络的综述,描述了基因相互作用以及基因如何在这一复杂机制中发挥作用,该机制也受日光和昼夜节律等环境触发因素的支配。目的是收集有关大豆开花过程的信息和见解,旨在提供有用的知识,以帮助开发耐旱大豆品系,最大限度地减少因开花延迟或提前而造成的损失,从而抑制财务和生产力损失。
营养压力导致全球 20 多亿人口营养不良。要么是我们商业化种植的谷物、豆类和油籽作物缺乏必需营养素,要么是这些作物生长的土壤中矿物质含量越来越少。不幸的是,我们的主要粮食作物缺乏正常人体生长所需的微量营养素。为了克服营养不足的问题,应更加重视鉴定与必需营养素有关的基因/数量性状位点 (QTL),并通过标记辅助育种将其成功部署到优良育种品系中。本文介绍了主要粮食作物中蛋白质含量、维生素、常量营养素、微量营养素、矿物质、油含量和必需氨基酸的已鉴定 QTL 的信息。这些 QTL 可用于开发营养丰富的作物品种。基因组编辑技术可以快速精确地修改基因组,并直接丰富优良品种的营养状况,在应对营养不良的挑战方面具有光明的未来。
• 豌豆和小扁豆根部次生代谢物/多酚对根腐病的影响。• 利用分子育种和常规育种提高豌豆和小扁豆的根腐病抗性并快速释放品种。• 燕麦镰刀菌毒素敲除分离株的宿主-病原体相互作用• 小扁豆的基因编辑。• 表征 SK 中丝囊霉和镰刀菌种群的多样性和丰度。• 扩大加拿大西部丝囊霉基因组资源。• 优化作物轮作以减轻小扁豆和豌豆根腐病对丝囊霉的 RNAi 控制。• 对丝囊霉的 RNAi 控制• 小扁豆和苜蓿根部感染模型中根腐病的内生控制。• 使用从土壤中分离的细菌对丝囊霉根腐病进行生物防治。• 使用生物防治、天然产物和耐受品系进行 IPM 金字塔式推广。