振幅[3,4]光散射的方向性[5,6]自旋[7,8]和轨道角动量[9,10],而不受金属基方法固有材料损耗的限制。特别是,由近场增强驱动的应用,如生物分子传感,依赖于高共振品质因数(Q)(定义为共振波长除以线宽),因此需要高的电磁近场强度来实现最大样本灵敏度。[11,12]从米氏理论等中得知,共振品质因数和共振器折射率[13]之间的固有相关性,因此推动了基于高折射率材料体系(如硅[14,15]锗[16,17]或磷化镓)的全电介质纳米光子学的发展。 [18,19] 尽管这些材料在近红外 (NIR) 和红外 (IR) 光谱区域具有出色的高 Q 共振特性,但由于它们的带隙能量处于中间水平,因此在整个可见光谱范围内都伴随着较高的材料固有带间吸收损耗。由于这些基本的材料限制,在整个可见光谱范围内都缺乏无损高折射率材料。[20–23] 特别是,对于可见波长范围,存在大带隙和无损材料的竞争
最近发现的 Zintl 化合物 Yb 10 MnSb 9 是一种热电材料,在成分空间上与 Yb 14 MnSb 11 和 Yb 21 Mn 4 Sb 18 等高性能热电材料非常接近。我们在此测量并报告 Yb 10 MnSb 9 在高达 825K 下的电子和热传输数据。由于晶体结构复杂,这种材料具有超低的热导率。超低的晶格热导率加上比其他 Yb-Mn-Sb 化合物更高的塞贝克系数,导致在 825K 时具有约 0.34 的中等 zT,并且可能通过材料优化在更高的值处达到峰值。我们近似估计带隙约为 0.4 eV,并预计 zT 能够在 725K 时达到高达 0.33 的值(与该温度下的 Yb 14 MnSb 11 相当)使用热电品质因数分析。通过晶界工程提高品质因数 B,该 zT 有可能达到更高的值。这里我们为未来研究改进热电性能提供了建议。这项工作是首次报告这种 Yb 10 MnSb 9 化合物的热导率、带隙和 zT,我们通过与领先的 Yb 14 MnSb 11 材料的比较讨论了这种材料对未来热电研究的影响。
描述了样品上温度梯度引起的电压降,并决定了热电材料的品质因数。在 EMRP 项目“能量收集计量”的范围内,首次在 PTB 和全球范围内对参考材料进行了计量研究和表征,了解其在 300 K 至 900 K 较高温度范围内的塞贝克系数。该温度范围对于汽车领域等应用非常重要。两种参考材料 ISOTAN® 和掺铋碲化铅的塞贝克系数的测量不确定度在 2.5% 到 8% 之间,具体取决于材料和温度。两种材料均可从 PTB 获得。
图 4. (a) 三个硅基 CPW 谐振器的内部品质因数 (𝑄 𝑖) 与平均光子数 < 𝑛 𝑝ℎ > 的关系,散点图为测量数据,实线是基于公式 (4) 的拟合数据,误差线在每个数据点的顶部和底部用大写字母表示,(a) 40 nm Ta 在 𝑇= 77 mK。(b) 𝑓 𝑟 = 3.654 在三个不同温度下。(c) 80 nm Ta 在 𝑇= 44 mK 时和 (d) 100 nm Ta 在 𝑇= 40 mK 时。
摘要 ─ 提出了一种基于平面结构的嵌套互补开口环谐振器 (CSRR)。这项工作的主要目的是获得更高的品质因数 (Q 因子),同时将复介电常数的误差检测降至最低。传感器在 3.37GHz 谐振频率下工作,并通过 ANSYS HFSS 软件进行仿真。随后,在传感器上放置了多个被测材料 (MUT),制造并测试了设计的传感器。结果实现了 464 的高空载 Q 因子。理论、模拟和测量的误差检测参数结果具有很好的一致性,低于 13.2% 的实部介电常数和 2.3% 的损耗角正切。所提出的传感器在食品工业、生物传感和制药工业应用中非常有用。
定义了一种用于评估电热 (EC) 材料冷却效率的新品质因数,其中将热性能与材料的损耗共同考虑。使用专门开发的基于柔性热敏电阻的测量装置,直接测量 P(VDF-TrFE-CFE) 电热聚合物薄膜的热效应和损耗。利用这些数据与新的品质因数,可以推断出所研究的 EC 材料在实际工作条件下的预期冷却效率。介电损耗是实现所需冷却性能的主要限制因素。这一发现表明,除了研究巨大的热响应之外,还必须将减少材料损失视为研究用于冷却应用的最佳 EC 制冷剂的关键目标。最后,概述了一些减少损失的策略。
由于能量的限制及其对总损耗的影响,介电基板的选择在射频频率下起着重要作用。与能量存储相关的基板介电常数显著影响电路在较高频率下的性能。根据介电常数行为,基板被分为有损介电常数或良好介电常数。损耗角正切值取决于介电常数,并影响传输线的品质因数。在硅中,由于金属-半导体结,金属接触会产生肖特基接触。这需要进行适当的公式化和建模,以预测电路行为。本文研究并详细介绍了掺杂、载流子迁移率、频率等各种现象是影响介电常数的主要因素,并研究了它们对损耗角正切的作用
摘要 — 从硅上外延生长的氮化镓 (GaN) 开始,设计、制造并表征了集成压电换能器的预应力微谐振器。在夹紧梁中,众所周知,拉伸应力可用于增加谐振频率。在这里,我们计算了预应力梁中平面外弯曲模式的模态函数,并推导出一个模型来预测谐振频率和压电驱动因子。我们表明,理论和实验结果之间可以获得良好的一致性,并推导出机电转换的最佳设计。最后,我们的模型预测了由于拉伸应力导致的品质因数增加,这已通过真空下的实验测量得到证实。这项研究展示了如何利用外延工艺产生的材料质量和初始应力。
β -氧化镓(β -Ga 2 O 3 )的带隙约为4.9 eV [ 1 ],作为一种新兴的超宽带隙半导体,近年来得到了广泛的研究。由于其具有成熟的块体材料制备、优异的Baliga 品质因数和高电子迁移率等优点[ 2 ],β -Ga 2 O 3 被认为是一种很有前途的日盲紫外(UV)光电探测器、气体传感器、紫外透明导体和大功率电子器件的候选材料[ 3 ,4 ]。虽然块体β -Ga 2 O 3 是外延生长高质量β -Ga 2 O 3 薄膜的理想衬底,但其昂贵的成本和较差的热导率仍然阻碍了同质外延的商业化。因此,在低成本、大尺寸衬底上异质外延β -Ga 2 O 3 薄膜仍然具有重要意义。
摘要:本文介绍了一种双二阶频率滤波器电路。电压模式下具有五种功能的标准频率滤波器。使用VDCC器件,电压为±5VDC,具有并联无源RLC配置的多输入、单输出形式。并且使用2个电容器和2个电阻器,它可以在不改变结构的情况下过滤五个标准频率函数:AP,BP,HP,LP和BR。它具有电路结构简单的突出特点。可以通过调节偏置电流来调整品质因数,通过调节电容器来控制固有频率。发现电路的综合与理论一致。通过使用PSPICE程序模拟结果来验证结果。关键词——双二阶滤波器,VDCC,电子可控,ABB,MISO。