再生冷却或倾倒冷却喷嘴是热气体膨胀的关键部件,可实现液体火箭发动机系统的高温和性能。再生冷却通道壁喷嘴是整个推进行业使用的一种设计解决方案,是一种制造带有内部冷却液通道的喷嘴结构的简化方法。通道壁喷嘴 (CWN) 设计的规模和复杂性可能给制造带来挑战,从而延长交货时间并提高成本。其中一些挑战包括:1) 独特且耐高温的材料,2) 在制造和组装过程中对大型零件的严格公差以容纳高压推进剂,3) 薄壁特征以保持足够的壁温,以及 4) 独特的制造工艺操作和复杂的工具。美国国家航空航天局 (NASA) 和美国专业制造供应商正在完善现代制造技术,以降低复杂性并降低与通道壁喷嘴制造技术相关的成本。增材制造 (AM) 是正在评估的通道壁喷嘴关键技术进步之一。推进部件的增材制造大部分集中在激光粉末床熔合 (L-PBF) 上,但目前还无法将其规模化应用于大型喷嘴。NASA 正在开发用于喷嘴的定向能量沉积 (DED) 技术,包括基于电弧的沉积、吹粉沉积和激光丝直接封堵 (LWDC)。目前考虑采用不同的方法来制造喷嘴,并且每种 DED 工艺都提供独特的工艺步骤以实现快速制造。基于电弧和吹粉沉积的技术用于形成 CWN 衬套。正在展示各种材料,包括 Inconel 625、Haynes 230、JBK-75 和 NASA HR-1。吹粉 DED 工艺也正在展示如何在类似材料中通过一次操作形成整体通道喷嘴。LWDC 工艺是一种使用局部激光丝沉积技术封堵衬套内通道并形成结构夹套的方法。除了双金属收尾材料(C-18150 - SS347 和 C-18150 - Inconel 625)外,该工艺还使用了上述相同的材料。NASA 已完成对各种通道壁喷嘴制造技术的工艺开发、材料特性和热火测试。本出版物概述了正在评估的各种通道壁喷嘴制造工艺和材料,包括热火测试的结果。还讨论了与通道壁喷嘴制造相关的未来发展和技术重点领域。
收敛-发散 (CD) 喷嘴的优化对于整个航空航天工业的各种应用都至关重要 - 这些领域与 NASA 的使命密切相关。这项研究特别关注机器学习(特别是遗传算法)和计算流体动力学 (CFD) 软件在 CD 喷嘴几何优化问题中的应用。通过操纵三次样条连接的控制点的位置,可以创建一个开放的设计空间并驱动性能最佳的单个 CD 喷嘴产生通过欧拉方程计算的等熵流场 (Δ𝑆= 0.0𝐽𝑘𝑔𝐾)。本文产生的最佳情况对 Δ𝑆= 0.935𝐽𝑘𝑔𝐾 的局部最小几何形状进行了初始猜测。 395 万美元。该项目奠定的基础为进一步应用遗传算法优化 CD 喷嘴和其他亚音速/超音速流体组件打开了大门。
提前4天 —— 关于上述内容,我们将在接受“投标和合同指南”、“开放式柜台方法实施指南”和“标准合同等”的合同条款后提交投标报价。 此外,我们公司(我的(个人)
摘要:激光金属沉积 (LMD) 工艺是一种增材制造方法,通过激光束与气体/粉末流的相互作用生成 3D 结构。流径、表面密度和焦平面位置会影响沉积轨迹的尺寸、效率和规律性。因此,准确了解气体/粉末流特性对于控制工艺和提高其在工业应用中的可靠性和可重复性至关重要。本文提出了多种实验技术,如气压测量、光学和称重方法,以分析气体和粒子速度、粉末流直径、其焦平面位置和密度。这是针对三种喷嘴设计和多种气体和粉末流速条件进行的。结果表明:(1) 粒子流遵循高斯分布,而气体速度场更接近于平顶分布;(2) 轴向、载体和整形气流显著影响粉末流的焦平面位置;(3) 只有整形气体、粉末流速和喷嘴设计会影响粉末流直径。然后对三个喷嘴分别进行具有 RANS 湍流模型的气体和粉末流的 2D 轴对称模型,结果显示与实验结果具有良好的一致性,但压力测量对气体速度的估计过高。
使用金属粉末原料的基于激光的直接能量沉积 (DED) 系统被认为是一种有前途的制造方法,因为它们能够缩短生产周期并制造复杂的零件几何形状。通过在同轴注入材料并使其凝固的同时用高功率激光束产生熔池来构建组件。大规模使用 DED 的障碍在于粉末收集效率差,在这种情况下,一部分注入的粉末会逸出熔池,导致打印材料质量与供应原料质量之比下降。已经观察到混合制造机床内 DED 系统上同轴喷嘴的磨损状态会随着时间的推移降低收集效率。本研究通过将流动可视化技术应用于现场过程监控格式、实施计算流体动力学 (CFD) 模拟和沉积测试来调查这种影响。识别和分类由于磨损而导致的喷嘴几何缺陷,并通过多种计算方法证明喷嘴尖端磨损(导致轴向尖端减少)对粉末收集效率的影响。发现集料效率与粉末流直径之间存在线性相关性,导致喷嘴尖端逐渐减小至 -1 毫米时效率损失 15-20%。这些结果为进一步研究粉末进料 DED 系统的磨损效应和零缺陷制造解决方案奠定了基础。
摘要 太阳能电池的性能随温度的升高而下降,热量会使输出效率降低 10–25%。工作温度在光伏转换过程中起着关键作用。电效率的提高取决于冷却技术,特别是安装在高温区域的光伏模块。模拟了在不同配置下运行的光伏板单喷嘴的冷却过程。模拟包含两部分:第一部分是流体撞击传感器正面的热力学研究。第二部分是两种玻璃盖的性能比较。从该模拟中得出的主要结果是,在 0.1–1.7 m/s 范围内的低冲击液滴节奏下,单喷嘴排列对增强冷却过程的效果。
用于可视化管道流线和喷嘴/扩散器边界层分离的简单教学风洞装置 摘要 风洞测试长期以来一直是许多流体力学和空气动力学入门课程的重要组成部分。使用标准电子或机械平衡硬件可以轻松演示与各种气动形状上的阻力形成相关的粘性和压力阻力的基本物理机制。在小比例模型上对升力、阻力、俯仰力矩和压力分布的实验测量同样在支持此类入门课程中的基本流体力学理论方面发挥着重要作用。了解这些物理特性对于汽车空气动力学设计、最大限度地提高燃油经济性以及教授应用于飞机的空气动力学设计基本原理都非常重要。除了更常见的使用风洞作为研究尾翼安装测试模型的空气动力学的工具之外,风洞作为一个整体还提供了展示流体力学的几个重要原理以及将这些原理应用于工程设计的方法。风洞最近的一个应用是对整个风洞进行压力分布测量,以展示理想的无粘性流体流动行为,以及说明各种机械能源的相对重要性。
推力矢量构成喷嘴优化和增加功能的下一步。喷嘴用于将射流引导到发动机轴以外的方向上,以产生飞机重心周围的横向力和矩,可用于飞机操纵。在二维螺距中只有喷嘴可以在垂直平面内偏转,因此喷嘴补充了水平控制表面。有几种类型的推力向量喷嘴。例如,有2-D和3-D推力向量的喷嘴。ITP喷嘴是3-D矢量喷嘴。也,达到气射流偏转的方法有不同的方法:最有效的方法是仅机械偏转截面,从而最大程度地减少对喉咙上游(Sonic)部分的影响。取决于此不同部分的控制水平,con-di喷嘴可以是两种类型:
喷嘴用作排气系统,以极高的速度排出推进剂气体。喷嘴在所有飞行条件下提供推力。它们是推进系统的主要部件,可将高压气体中储存的能量转化为推力,推动飞机或航天器前进。这确实会影响喷嘴的设计和优化,例如钟形、锥形或塞式喷嘴 - 虽然从理论上讲,甚至影响很大,影响燃油效率、有效载荷能力和任务的成功完成等问题。对于太空探索任务等复杂任务,喷嘴对于增强航天器的推进系统至关重要。当真空条件占主导地位时,例如在深空的情况下,喷嘴设计将变得更加重要,因为大气施加的压力直接影响废气的膨胀方式。火箭喷嘴的效率最终将决定哪种火箭是省油的,哪种火箭是成功的太空任务的完成者:发射卫星、向空间站运送货物,还是推动对遥远行星和卫星的探索任务。随着对太空的进一步探索,喷嘴将成为航天器中一项非常重要和创新的技术,反映了航空航天工程的未来发展方向。数百万美元的研究确实有道理。无论它是火箭还是喷气发动机的一部分,喷嘴都是提供速度和效率的装置,可以推动飞机飞向空中。现代飞机、喷气发动机和涡轮机喷嘴有三个用途:推力、将废气带回自由流以及设定发动机的质量流速。喷嘴位于动力涡轮机的下游。制造推力所遵循的原理是牛顿第三运动定律:每个作用力都有一个大小相等、方向相反的反作用力。
在喷嘴单元测试中,我们确认了围绕整个圆周使推力偏转20度所需的排气喷嘴的方向可以机械地改变,并且我们还可以响应喷嘴故障,实现了我们的研究目标。